
University of California, San Diego

Analysis of Impulse Radio Ultra-Wideband Systems

A dissertation submitted in partial satisfaction of the

requirements for the Degree of Doctor of Philosophy

in

Electrical Engineering (Communication Theory & Systems)

by

Matteo Sabattini

Commitee in charge:

Professor Elias Masry, Co-Chair
Professor Laurence B. Milstein, Co-Chair
Professor William Hodgkiss
Professor Joseph Pasquale
Professor Bhaskar Rao

2006



c©
Matteo Sabattini, 2006
All Rights Reserved.



The dissertation of Matteo Sabattini is approved, and

it is acceptable in quality and form for publication on

microfilm:

————————————————————————–

————————————————————————–

————————————————————————–

————————————————————————–

————————————————————————–

Co-Chair

Co-Chair

University of California, San Diego

2006

iii



“Experience is the name everyone gives to their mistakes”

Oscar Wilde

To Fanny and Chiara

iv



Contents

Signature page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Industry’s and Agencies’ Interest in UWB . . . . . . . . . . . . . . . 2

1.2 Standardization Standpoint . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contribution of this work . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 A New Analytical Approach to the Performance Evaluation

of UWB Time-Hopping Binary Pulse Position Modulation

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Description of the System . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Single-interferer component . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Closed Form Expression for the Characteristic Function of the MAI . 14

2.4 Probability of Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Rectangular pulses - Analysis . . . . . . . . . . . . . . . . . . 18

2.4.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Proof of Equation (2.7) . . . . . . . . . . . . . . . . . . . . . . 22

v



2.5.2 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.3 Two-step approximation . . . . . . . . . . . . . . . . . . . . . 35

2.5.4 Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.5 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Interference Mitigation via Beamforming for Impulse Radio

Time Hopping CDMA Systems . . . . . . . . . . . . . . . . . . . 44

3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Receiver Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Baseband Correlator Receiver Output . . . . . . . . . . . . . . 53

3.2.2 MMSE combining for Impulse Radio . . . . . . . . . . . . . . 53

3.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Advantage of the QuadR . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Covariance Matrix Estimation . . . . . . . . . . . . . . . . . . 56

3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Acquisition and Channel Estimation for Overlay UWB Trans-

mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Transmitted and Received Signal . . . . . . . . . . . . . . . . . . . . 70

4.2 Data-aided estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Probability of correct synchronization . . . . . . . . . . . . . . . . . . 81

4.4 Mean-square error of the channel estimates . . . . . . . . . . . . . . . 83

4.5 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . . 85

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A Derivations for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . 96

A.1 Justification of the approximation c
(k)
j−ηk

Tc +δd
(k)
i ≈ c

(k)
j−ηk

Tc . . . . . . 96

vi



A.2 “Continuity” of the Probability of Error . . . . . . . . . . . . . . . . 97

A.3 Probability of Error for rectangular pulses . . . . . . . . . . . . . . . 98

A.4 Upper bound on the variance of the MAI . . . . . . . . . . . . . . . . 103

B Derivations for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 105

B.1 Proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.2 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.3 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C Derivations for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . 112

C.1 From Eq. (4.22) to Eq. (4.23) . . . . . . . . . . . . . . . . . . . . . . 112

C.2 Pr [yHA y < 0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.2.1 Closed form expression for Pr [yHA y < 0] . . . . . . . . . . 114

C.2.2 Complex conjugate pairs of eigenvalues . . . . . . . . . . . . . 121

C.3 Proof of Eq. (4.60) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

vii



List of Tables

2.1: Proof of Proposition 2.1 (I) . . . . . . . . . . . . . . . . . . . . . . . 31

2.2: Proof of Proposition 2.1 (II) . . . . . . . . . . . . . . . . . . . . . . . 32

2.3: Proof of Proposition 2.1 (III) . . . . . . . . . . . . . . . . . . . . . . 32

3.1: System and Channel Parameters . . . . . . . . . . . . . . . . . . . . . 58

4.1: Parameters used in the numerical results . . . . . . . . . . . . . . . . 86

viii



List of Figures

1.1: Because of their wide bandwidth, UWB systems provide the highest

spatial capacities. Source: [53]. . . . . . . . . . . . . . . . . . . . . . . 3

1.2: Regulatory spectral masks for the U.S. Source: [20]. . . . . . . . . . . 4

2.1: Performance analysis for 20 users, M=50 . . . . . . . . . . . . . . . . 20

2.2: Performance analysis for 20 users, M=50 . . . . . . . . . . . . . . . . 20

2.3: Performance analysis for 40 users, M=50 . . . . . . . . . . . . . . . . 21

2.4: Performance analysis for 10 users, fixed bit rate . . . . . . . . . . . . 22

2.5: Error between the simulated variance, the upper bound and the ap-

proximate variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1: Upper Bound for λn(T ) for different values of n. . . . . . . . . . . . . 49

3.2: Array Receiver Structure. . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3: MAI Mitigation: BER vs Number of Receiving Elements. . . . . . . . 60

3.4: MAI Mitigation: BER vs SNR. . . . . . . . . . . . . . . . . . . . . . 61

3.5: MAI Mitigation: BER vs Number of Receiving Elements. 802.15 Chan-

nel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6: MAI Mitigation: BER vs Number of Receiving Elements. MMSE com-

bining with an estimate of the covariance matrix, for different values

of K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7: NBI Suppression: BER vs Number of Receiving Elements. 5 Collected

Paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8: NBI Suppression: BER vs SNR. 5 Collected Paths. . . . . . . . . . . 64

3.9: NBI Suppression: BER vs Number of Receiving Elements. 802.15

Cahnnel, 5 Collected Paths. . . . . . . . . . . . . . . . . . . . . . . . 65

ix



3.10: MAI and NBI Suppression: BER vs SNR. 5 Collected Paths. . . . . . 65

4.1: Different spreading schemes: (a) DS-CDMA; (b) TH-CDMA; (c) BTH-

CDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2: Spectrum of q̃T (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3: Energy Loss for different values of s, compared with the energy content

of x(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4: Receiving strategies: (a) RAKE receiver; (b) TR receiver. . . . . . . . 79

4.5: Probability of incorrect synchronization as a function of the SNR, for

different windows of observation (M=50 ⇒ 12.8 ns; M=200 ⇒ 51 ns).

Interference parameters: fi = 7 GHz, Bi = 10−2 ×BW , SIR = -20 dB 86

4.6: Probability of incorrect synchronization as a function of the SNR, for

different windows of observation (M=50 ⇒ 12.8 ns; M=200 ⇒ 51 ns).

Interference parameters: fi = 7 GHz, Bi = 10−1 ×BW , SIR = -20 dB 87

4.7: Probability of incorrect synchronization as a function of the SNR, for

different windows of observation and interference center frequencies

(M=50 ⇒ 12.8 ns; M=200 ⇒ 51 ns). Interference parameters: fi = 4

GHz, Bi = 10−2 ×BW , SIR = -20 dB . . . . . . . . . . . . . . . . . . 88

4.8: Probability of incorrect synchronization as a function of the SNR, for

different windows of observation and interference center frequencies

(M=50 ⇒ 12.8 ns; M=200 ⇒ 51 ns). Interference parameters: fi = 4,

7 and 10 GHz, Bi = 10−1 ×BW , SIR = -10 dB . . . . . . . . . . . . . 88

4.9: Channel estimation error as a function of the SNR, for different win-

dows of observation (M=50 ⇒ 12.8 ns; M=100 ⇒ 25.6 ns; M=200 ⇒
51 ns). Interference parameters: fi = 7 GHz, Bi = 10−2 ×BW , SIR =

-20 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

x



4.10: Channel estimation error as a function of the SNR, for different win-

dows of observation and interference bandwidths (M=50 ⇒ 12.8 ns;

M=200⇒ 51 ns). Interference parameters: fi = 7 GHz, Bi = 10−2, 10−1×
BW , SIR = -20 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.11: Bit error rate as a function of the SNR, for different windows of obser-

vation and interference bandwidths (M=50 ⇒ 12.8 ns; M=200 ⇒ 51

ns). Interference parameters: fi = 7 GHz, Bi = 10−2, 10−1 ×BW , SIR

= -20 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xi



List of Abbreviations

AoA Angle of Arrival

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPPM Binary Pulse Position Modulation

BPSK Binary Phase Shift Keying

B-TH Bi-orthogonal Time Hopping

CDMA Code Division Multiple Access

CEPT European Conference of Postal and Telecommunication

CR Correlator Receiver

DS Direct Sequence

ETSI European Telecommunications Standards Institute

FCC Federal Communications Commission

IR Impulse Radio

LOS Line of Sight

MAI Multiple Access Interference

MLE Maximum-Likelihood Estimation

MMSE Minimum Mean-Square-Error

MRC Maximal Ratio Combining

MSE Mean-Square-Error

NBI Narrow-Band Interference

pdf Probability Density Function

PPM Pulse Position Modulation

PSD Power Spectral Density

QuadR Quadrature Receiver

RF Radio Frequency

SIR Signal-to-Interference Ratio

SNIR Signal-to-Noise-and-Interference Ratio

SNR Signal-to-Noise Ratio

TH Time Hopping

TR Transmitted Reference

UWB Ultra-Wideband

xii



Acknowledgments

“La vita umana non dura che un istante.
Bisognerebbe trascorrerla a fare ció che piace.
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by
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Professor Elias Masry, Co-Chair

Professor Laurence B. Milstein, Co-Chair

Ultra-wideband communications are gaining popularity for future indoor wireless

high-speed/low-power transmissions, thanks to their versatility and technological

features. At the same time, the unlicensed spectrum allocated for ultra-wideband

transmissions impose stringent constraints on power emission, as well as coexistence

capabilities with other commercial systems. Many technical issues are still open at

the present time: the extremely wide bandwidth results in a large number of resolv-

able multipaths, and, consequently, a high receiver complexity. Furthermore, ultra-

wideband systems have to coexist with other ultra-wideband devices, as well as other

narrow-band commercial systems. This dissertation addresses some of these issues,

and sketches some possible solutions. First, a novel analytical technique is introduced,

in order to accurately model the interference at the receiver from other ultra-wideband

devices. Second, beamforming techniques are analyzed, in order to mitigate the effect

of the aforementioned MAI, as well as the interference from narrow-band commercial

systems and jammers. Another open issue for ultra-wideband devices deals with syn-

chronization and acquisition in harsh multipath environments, and in the presence

xix



of narrow-band interference. A technique to jointly estimate the channel attenua-

tion and acquire code synchronization, based on an approximation of the maximum

likelihood criterion, is presented and analyzed.
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1 Introduction

“Through me you pass into the city of woe:
Through me you pass into eternal pain:

Through me among the people lost for aye.
Justice the founder of my fabric moved:

To rear me was the task of power divine,
Supremest wisdom, and primeval love.

Before me things create were none, save things
Eternal, and eternal I shall endure.

All hope abandon, ye who enter here.”

Dante Alighieri

IN recent years, ultra-wideband (UWB) has become a potential candidate for

future high-speed indoor communications. Its wide bandwidth, on the order of few

gigahertz, and its very low power spectral density (PSD), can achieve high data rates

as well as good coexistence with other commercial systems. The large bandwidth

results in very precise localization features, while the low PSD guarantees a low

probability of intercept/detection. However, so many unique features come at a cost.

The wide bandwidth, far wider than the coherence bandwidth of most channels,

results in a high frequency selectivity of the propagating channel, with the received

energy spread over a large number of low energy multipath components. In order to

recover an acceptable power level, the receiver needs to be carefully designed, and the

trade-off between complexity and energy collection must be adapted to the specific

application. Furthermore, receiver operations like acquisition, synchronization, and

channel estimation present new unique challenges, and have to be performed in the

presence of very low signal-to-noise ratio (SNR) per path.

1
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The unlicensed spectrum allocated by the Federal Communications Commission

(FCC) imposes stringent constraints on power emissions [20], while coexistence capa-

bilities with other commercial narrow-band systems are required. Moreover, the FCC

regulations and the industry trend foresee the use of UWB radio for indoor/short

range transmissions. This implies that a fairly large number of UWB devices might

have to share the same bandwidth in a small office room environment.

The challenges of coping with low-power signals, harsh propagation environments,

multiple UWB devices in close proximity, and the presence of narrow-band jammers,

have to be carefully addressed before UWB can successfully hit the market. We will

highlight the contribution of this dissertation in Section 1.3. Prior to this, the state

of the art of UWB in terms of industrial interest and regulatory considerations is

described in the next two sections.

1.1 Industry’s and Agencies’ Interest in UWB

Considerable attention surrounds the emergence of UWB radio as a technology ready

for commercialization. UWB techniques hold the promise of solving critical propaga-

tion related problems that have plagued conventional radio techniques. Also, UWB

opens up a huge new “wireless channel” with gigahertz capacities as well as the highest

spatial capacities measured in bits-per-Hertz-per-square meter (see Fig. 1.1).

The US military developed UWB in the 1970s for various uses, including low-power

communications capable of evading mainstream eavesdropping techniques. Funda-

mental UWB patents are based on the military research. Today, many vendors are

developing UWB products. Xtreme Spectrumtm has shipped UWB chips to man-

ufacturers, while consumer electronics makers have announced UWB-capable home

entertainment products.

UWB has four widely recognized application areas which exploit the unique prop-
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Figure 1.1: Because of their wide bandwidth, UWB systems provide the highest
spatial capacities. Source: [53].

erties of short pulse transmission [45]:

• Multimedia communications;

• Wireless sensor networks;

• Bio-medical imaging and radar;

• Positioning.

UWB will primarily compete with Bluetooth technology for short-range device

connectivity. The first big UWB market will be home networking, including the

provision of links between computers and elements of home entertainment systems.

UWB’s fast transfer speeds could make the technology ideal for home theater systems

because the high data rates would contribute to the smooth, uninterrupted viewing

of data-intensive video programs. Many vendors are also excited about using UWB’s

connectivity capabilities to replace universal serial bus 2, the latter version of the USB

plug-and-play interface between computers and add-on devices [38]. An exhaustive

list of foreseen applications and technological challenges can be found, for example,

in [3].
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Given its promising benefits, it appears that UWB is less a question of “if” and

more of “when and how”. However, some scepticism about the effective deployment

of UWB in the marketplace has been growing in the last couple of years, mostly

driven by the deadlock in the IEEE standardization body, and the slow response of

regulatory bodies outside the U.S.

1.2 Standardization Standpoint

In the U.S., Asia and Europe, there are ongoing UWB regulation activities. In the

U.S., the open process was initiated by the FCC issuing a Notice of Inquiry in late

1998. After an intensive public discussion, the FCC then issued a Notice of Proposed

Rulemaking in mid-2000 [20], [21]. The IEEE is the U.S. standardization body actively
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Figure 1.2: Regulatory spectral masks for the U.S. Source: [20].

working towards a common standard for UWB technology, and a first set of proposals

was submitted in March 2003 [26].

The standards battle over UWB to agree on a unified physical layer interface spec-

ification for personal area networking has come to a very acrimonious stalemate. The
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gap that has existed for over a year between two factions within the IEEE802.15.3

standardization working group has, over the past few months, turned into a deadlock.

The impasse could lead to separate specifications emerging for this technology. Ques-

tions are now being asked over whether this would really dampen the prospects for

UWB [62]. Furthermore, this process has been, so far, mostly a U.S.-led project. Reg-

ulatory groups, such as the European Conference of Postal and Telecommunication

(CEPT), are generally negative on the whole issue because of potential spectrum inter-

ference and power level concerns. Drafts specifications are under development within

European Telecommunications Standards Institute (ETSI), but, with the CEPT dom-

inated by European operators rather than chip companies, delays can be expected.

For a sour critic view of UWB, refer, for example, to [63].

1.3 Contribution of this work

As previously mentioned, one of the main issues for UWB communications is the

need to operate in the presence of several interference sources: the indoor trans-

mission environments (such as office spaces or apartment buildings) as well as the

large bandwidth impose stringent coexistence capabilities with multiple access inter-

ference (MAI) and narrow-band interference (NBI). In order to accurately model the

interference from other UWB devices, the Gaussian approximation fails in accurately

predicting the performance of the system. For this reason, Chapter 2 is devoted to

a new approach, based on a characteristic function argument, that enables one to

predict the performance with great accuracy.

In order to reduce the effects of both MAI and NBI, Chapter 3 presents a Minimum

Mean-Square-Error (MMSE) beamforming approach to reject interference. The use

of multiple antennas - providing only marginal improvements from a spatial diversity

perspective, given the large frequency diversity normally available in typical UWB
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environments - can be very effective from a beamforming perspective to boost the

capacity of the system.

The presence of narrow-band jammers can hurt many receiving operations, such

as channel estimation and spreading code acquisition. Chapter 4 presents a joint ac-

quisition/estimation technique based on an approximation of the maximum likelihood

scheme. Finally, conclusions are drawn in Chapter 5.



2 A New Analytical Approach to

the Performance Evaluation of

UWB Time-Hopping Binary Pulse

Position Modulation Systems

“The collision of hail or rain with hard surfaces,
or the song of cicadas in a summer field.

These sonic events are made out of thousands of isolated sounds;
this multitude of sounds, seen as totality,

is a new sonic event.”
Iannis Xenakis

RECENTLY, UWB communications schemes have been proposed as an alter-

native to certain indoor wireless systems, such as 802.11, in order to boost the short

range capacity and coexist with other wireless networks. One of the proposed modu-

lation schemes is based around the impulse radio (IR) model ([65], [64]), with multiple

access capabilities achieved through the introduction of time hopping (TH).

Since the statistics of the MAI are very intricate, it is not possible to find an exact

closed-form expression for the characteristic function (and, correspondingly, the pdf);

for this reason, throughout the literature the MAI has typically been approximated by

a Gaussian random variable, based on a Central Limit Theorem argument. However,

as has been shown in [18], [23], and [2], for a TH pulse position modulation (PPM)

system, the common approximation of the MAI as a Gaussian random variable can

7
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lead to extremely poor results. What appears to be lacking in the above papers is an

analysis employing a mathematical model of the MAI that can lead to an accurate

expression for the probability of error of the system being considered.

In this chapter, a TH binary pulse position modulation (TH-BPPM) system is

considered, and the multiple access capabilities of TH are investigated. No channel

attenuation is considered at this point, so that the analysis focuses on the multi-user

interference alone. This is consistent with the models used in the references with

which we want to compare our results. A good (non Gaussian) approximation of the

characteristic function of the MAI is derived, which allows us to build an accurate

framework for evaluating the performance of an IR system; the analytical results are

shown to predict very closely the actual behavior of the system.

The rest of the chapter is organized as follows. Section 2.1 describes the binary

time hopped system, and the correlation procedure implemented at the receiver in

order to recover the transmitted information, as proposed in [65] and [64]. Sec-

tion 2.2 is devoted to the mathematical expression of the single-interferer case, which

is simplified and used in Section 2.3 to obtain a good approximation for the MAI

characteristic function. An explicit, but approximate, expression for the probability

of error is derived and presented in Section 2.4, along with a comparison of the an-

alytical results to both simulations and the common Gaussian approximation. The

results show a very accurate match of the analytical expression for the bit error rate

(BER) with simulations, while the Gaussian approximation is shown to fail in pre-

dicting the performance of the system for a reasonable number of users. The main

proofs and derivations are collected in Section 2.5; auxiliary computations are given

in Appendices A.1-A.4. Concluding remarks are given in Section 2.6.
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2.1 Description of the System

Consider a TH-BPPM system (as described in [65]) with Nu users. Let x(t) be the

transmitted pulse that, under ideal channel conditions, is equal to the received pulse.

We assume that x(t) is limited in time, so that its support is limited to the interval

[0, T ].

The transmitted pulse is ”time-hopped” over a frame of duration Tf by a pseudo-

random-noise sequence {cj}+∞
j=−∞ with a time shift Tc which is much smaller than Tf .

We assume cj ∈ {0, 1, ..., M−1}, and MTc = Tf (this is equivalent to partitioning the

frame into M slots). Furthermore, the transmitted pulse is shifted by an additional

time shift δ when the transmitted data symbol is a one. Each data symbol, di, is

spread over Ns frames, meaning a repetition code of rate r = 1/Ns is used.

Every user transmits a signal of the following form:

s(k)(t) =
+∞∑

j=−∞
x(t− jTf − c

(k)
j Tc − δd

(k)

b j
Ns
c − τk) (2.1)

where the index k indicates the k-th user, and τk is a random delay which is assumed

to be uniformly distributed over [0, NsTf ].

The parameters are defined as follows:

Tf : frame duration;

Tc: chip interval;

T : pulse duration;

cj: pseudo-noise sequence’s j-th symbol;

di: i-th data symbol;

δ: additional time shift;

τk: k-th user random delay.

Note that the system parameters ensure that each pulse is fully contained in a

given frame; moreover, pulses shifted by different spreading symbols do not overlap,
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i.e. Tc ≥ T + δ. Note also that throughout this chapter we assume an extra guard

time of T seconds every chip, that is, we will set Tc = 2T + δ in order to simplify the

analysis. Then, the limited support of x(t) ensures furthermore that x(t−cjTc−δ) = 0

for t /∈ [0, Tf ], ∀j.
Usually, we want orthogonal (in time) binary transmission, i.e, the pulse trans-

mitted when a one is to be sent does not overlap the pulse transmitted when a zero

is to be transmitted. This is accomplished by setting δ ≥ T , so that x(t)x(t− δ) = 0,

∀t ∈ [0, Tf ].

The transmitted signal for the k-th user can be re-written as

s(k)(t) =
+∞∑

l=−∞

(l+1)Ns∑

j=lNs

x(t− jTf − c
(k)
j Tc − δd

(k)
l − τk) , for 0 ≤ k ≤ Nu − 1. (2.2)

Without loss of generality, we focus our attention on user zero. At the receiver, we

assume perfect code synchronization, i.e., the code for the desired user is assumed

to be deterministic and known. The spreading sequences for interfering users are

modelled as equally likely random M -ary sequences.

Assuming Nu users, the received signal is the following:

r(t) =
Nu−1∑

k=0

+∞∑

l=−∞

(l+1)Ns−1∑

j=lNs

Akx(t− jTf − c
(k)
j Tc − δd

(k)
l − τk) + nw(t)

=
+∞∑

l=−∞

(l+1)Ns−1∑

j=lNs

A0x(t− jTf − cjTc − δdl − τ) (2.3)

+
Nu−1∑

k=1

+∞∑

l=−∞

(l+1)Ns−1∑

j=lNs

Akx(t− jTf − c
(k)
j Tc − δd

(k)
l − τk) + nw(t)

where the subscript for user zero has been dropped for simplicity of notation. Without

loss of generality, the random delay τ for user zero can be considered perfectly tracked

and set to zero, and nw(t) is additive white Gaussian noise (AWGN) with two sided

PSD η0/2. The Ak’s are the channel attenuation coefficients. From here on, we will
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assume perfect power control, i.e., Ak = 1, ∀k = 0, 1, ..., Nu − 1.

In order to recover the transmitted signal, the receiver accumulates the energy over

Ns frames, and the received signal is then correlated with a copy of the transmitted

pulse, as proposed in [65] and [64], in order to form the test statistic for the l-th data

symbol:

βl =

(l+1)Ns−1∑

j=l

∫ (j+1)Tf

jTf

v(t− jTf − cjTc)r(t)dt

=

∫ (l+1)NsTf

lTf

(l+1)Ns−1∑

j=l

v(t− jTf − cjTc)r(t)dt

where v(t) = x(t)− x(t− δ). Here, we are focusing on the first data symbol (that is,

on the first Ns frames, where l = 0). Once the test statistic has been formed, it is

compared to a zero threshold and a decision on the symbol is made.

Noting that the interferers’ delays are uniformly distributed over [0, NsTf ], the

test statistic over the first Ns frames can be written as

β0 =
Ns−1∑
j=0

∫ (j+1)Tf

jTf

v(t− jTf − cjTc)r(t)dt

=
Ns−1∑
j=0

∫ (j+1)Tf

jTf

v(t− jTf − cjTc)x(t− jTf − cjTc − δd0)dt

+
Nu−1∑

k=1

Ns−1∑
j=0

∫ (j+1)Tf

jTf

v(t− jTf − cjTc)

{
Ns−1∑
i=0

x(t− iTf − c
(k)
i Tc − δd

(k)
0 − τk)

+
−1∑

i=−Ns

x(t− iTf − c
(k)
i Tc − δd

(k)
−1 − τk)

}
dt

+
Ns−1∑
j=0

∫ (j+1)Tf

jTf

v(t− jTf − cjTc)nw(t)dt

The first term represents the component of the test statistic due to the desired signal,

and its value can be readily shown to be ±Eb = ±Nseb, with eb :=
∫ T

0
x2(t)dt, where

Eb represents the transmitted energy per bit. The second term of β0 represents the
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MAI, while the third term is filtered Gaussian noise, which is zero mean, and whose

variance is readily shown to be σ2
n = η0Nseb. The final test statistic can be written

as follows:

β0 = Eb + mI + n (2.4)

2.2 Single-interferer component

We can write the MAI as follows:

mI =
Nu−1∑

k=1

Ns−1∑
j=0

∫ (j+1)Tf

jTf

v(t− jTf − cjTc)×
{

Ns−1∑
i=0

x(t− iTf − c
(k)
i Tc − δd

(k)
0 − τk)

+
−1∑

i=−Ns

x(t− iTf − c
(k)
i Tc − δd

(k)
−1 − τk

}
dt =:

Nu−1∑

k=1

mk

Since users can be assumed to be independent from each other, the characteristic

function of mI can be written as

ϕmI
(ω) = [ϕm1(ω)]Nu−1 (2.5)

and we focus our attention on ϕm1(ω). In order to simplify the expression for the

single-interferer component m1, we will use the following Lemma.

Lemma 2.1 Let τ be a random variable which is uniformly distributed over [0, NT ]

where N is a positive integer. Let η = b τ
T
c and τ = τ − ηT . Then

i) Pr[η = k] = 1
N

, for k = 0, 1, ..., N − 1;

ii) τ is uniformly distributed over [0, T ];

iii) τ and η are independent.

Using Lemma 2.1, we write the delay τ1 as η1Tf + τ 1, where η1 = b τ1
Tf
c and

τ 1 = τ1 − b τ1
Tf
cTf . Thus, τ 1 is uniformly distributed over [0, Tf ], η1 is a discrete

equally likely random variable, taking values 0, 1, . . . , Ns − 1, and τ 1 and η1 are
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independent of each other. Therefore, we can rewrite the single-interferer component

as follows:

m1 =
Ns−1∑
j=0

∫ (j+1)Tf

jTf

v(t− jTf − cjTc)

{
Ns−1∑
i=0

x(t− (i + η1)Tf − c
(1)
i Tc − δd

(1)
0 − τ 1)

+
−1∑

i=−Ns

x(t− (i + η1)Tf − c
(1)
i Tc − δd

(1)
−1 − τ 1)

}
dt. (2.6)

As is shown in Section 2.5.1, the single-interferer component can be simplified as

follows:

m1 =

η1−1∑
j=0

[p(τ 1 + s
(1)
j (d

(1)
−1)− cjTc) + p(τ 1 − Tf + s

(1)
j−1(d

(1)
−1)− cjTc)] (2.7)

+ [p(τ 1 + s(1)
η1

(d
(1)
0 )− cη1Tc) + p(τ 1 − Tf + s

(1)
η1−1(d

(1)
−1)− cη1Tc)]

+
Ns−1∑

j=η1+1

[p(τ 1 + s
(1)
j (d

(1)
0 )− cjTc) + p(τ 1 − Tf + s

(1)
j−1(d

(1)
0 )− cjTc)]

where

p(u) :=

∫ T+δ

0

v(t)x(t− u)dt , s
(1)
j (di) := c

(1)
j−η1

Tc + δd
(1)
i ,

and {cj}+∞
j=−∞ is the desired user’s spreading sequence, assumed deterministic and

known. The data symbols are equally likely, independent, identically distributed

binary symbols. It is easy to see that the support of p(u) is [−T, T + δ]. Moreover,

it is readily shown that p(u) is odd around its midpoint t = δ/2 when x(t) is even

around t = T/2. We furthermore notice that s
(1)
j is the sum of two independent

random variables, where the first one depends on η1. Since the spreading sequences

for interfering users are assumed to be random, taking values among 0, 1, . . . , M − 1,

conditioning on d
(1)
i and η1, the s

(1)
j ’s are conditionally independent, with conditional

pdf given by

f ∗
s
(1)
j

(s) =
1

M

M−1∑

k=0

δ(s− kTc − δd
(1)
i ).
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Note that the conditional pdf of s
(1)
j does not depend on η1; therefore, s

(1)
j does not

depend on η1 as well.

We introduce the approximation s
(1)
j (d

(1)
i ) ≈ s

(1)
j (0) =: s

(1)
j , where s

(1)
j is indepen-

dent of the data, with pdf given by

f
s
(1)
j

(s) =
1

M

M−1∑

k=0

δ(s− kTc).

This approximation is justified in Appendix A.1, and is reasonable for M large. There-

fore, we rewrite the single-interferer component as follows:

m1 ≈
η1−1∑
j=0

[p(τ 1 + s
(1)
j − cjTc) + p(τ 1 − Tf + s

(1)
j−1 − cjTc)]

+ [p(τ 1 + s(1)
η1
− cη1Tc) + p(τ 1 − Tf + s

(1)
η1−1 − cη1Tc)]

+
Ns−1∑

j=η1+1

[p(τ 1 + s
(1)
j − cjTc) + p(τ 1 − Tf + s

(1)
j−1 − cjTc)]

=
Ns−1∑
j=0

[p(τ 1 − Tf + s
(1)
j−1 − cjTc) + p(τ 1 + s

(1)
j − cjTc)]

2.3 Closed Form Expression for the Characteristic

Function of the MAI

The characteristic function for the single interferer is equal to

ϕm1(ω) = E[ejωm1 ] = Eτ [Es−1,s0,...,sNs−1
[ejωm1 ]] =

1

Tf

∫ Tf

0

Es−1,s0,...,sNs−1
[ejωm1 ]dt

=
1

Tf

M−1∑

k=0

∫ (k+1)Tc

kTc

Es−1,s0,...,sNs−1
[ejωm1 ]dt (2.8)

=
1

Tf

1

MNs+1

M−1∑

k=0

∫ (k+1)Tc

kTc




M−1∑

l−1=0

ejωp(t−(c0+M−l−1)Tc)



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×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(t−(ci−li)Tc)+p(t−(ci+1+M−li)Tc)]

)

×



M−1∑

lNs−1=0

ejωp(t−(cNs−1−lNs−1)Tc))


 dt

=
1

Tf

1

MNs+1

M−1∑

k=0

∫ Tc

0




M−1∑

l−1=0

ejωp(s−(c0+M−l−1−k)Tc)




×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(s−(ci−li−k)Tc)+p(s−(ci+1+M−li−k)Tc)]

)
(2.9)

×



M−1∑

lNs−1=0

ejωp(s−(cNs−1−lNs−1−k)Tc))


 ds

where we divided the interval [0, Tf ] into M intervals of length Tc, and we have let

t − kTc = s; moreover, we have used the fact that m1 is the sum of conditionally

independent random variables, conditioned on τ . Handling expression (2.9) without

any simplification is a very difficult task; furthermore, our goal is to obtain a simple

expression for the MAI characteristic function, which can be inverted and lead to an

expression for the probability of error. With this goal in mind, we first introduce

a simplified expression for (2.9), based on a ”telescopic” relation between its terms,

which is a key step in establishing a good approximation. The following Theorem 2.1

states the simplified exact characteristic function for the single-interferer component.

Theorem 2.1 The expression for the characteristic function ϕm1(ω) can be written

as

ϕm1(ω) =
1

Tf

1

MNs

M−1∑

k=0

∫ T+δ

−T

M z(k)
(
2ejωp(s) + M − 2

)z(k) (
ejωp(s) + M − 1

)Ns−2z(k)
ds

(2.10)

where z(0) = 0, and for k = 1, 2, . . . , M − 1, z(k) = cardinality(I(k)) with

I(k) := {i ∈ {0, 1, . . . , Ns − 2} such that
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M−1∑

li=0

ejω[p(s−(ci−li−k)Tc)+p(s−(ci+1+M−li−k)Tc)] = 2ejωp(s) + M − 2,

for s ∈ [−T, T + δ]}

As can be readily noticed, for Ns > 1 the characteristic function depends on the

desired user’s spreading sequence. In order to obtain a generic result, the dependance

on the spreading sequence has to be eliminated. In the following, an approximate

version of the single-interferer characteristic function is presented, based on a two-

step approximation procedure (see Section 2.5.3 for details).

Theorem 2.2 The characteristic function ϕm1(ω) can be approximated by

ϕ̂(ω) =

(
1− Ns

M

)
+

Ns

M

1

Tc

∫ T+δ

−T

ejωp(s)ds, (2.11)

where ϕ̂(ω) is a characteristic function, and

∣∣∣∣
ϕ(ω)− ϕ̂(ω)

ϕ̂(ω)

∣∣∣∣ ≤

[[
1 +

(
2

M−2

)2
]bNs

2
c
− 1

]
+

[(
1 + 2

M

)Ns − 1− 2Ns

M

]

(
1− 2Ns

M

) = O
(
M−2

)

The dependance on the spreading sequence has been avoided; furthermore, we have

shown that the fractional error between the approximate and the exact characteristic

functions decreases as the processing gain M increases. The proofs of both Theo-

rem 2.1 and Theorem 2.2 are given in Section 2.5.2 and 2.5.4 respectively.

For M large, using Theorem 2.2, the single-interferer characteristic function is

given by

ϕm1(ω) ∼=
(

1− Ns

M

)
+

Ns

M

1

Tc

∫ T+δ

−T

ejωp(s)ds =

(
1− Ns

M

)
+

Ns

M

1

Tc

c(ω) (2.12)

where

c(ω) :=

∫ T+δ

−T

ejωp(s)ds.



17

Thus, the MAI characteristic function is approximately given by

ϕmI
(ω) ≈ ϕ̂mI

(ω) = [ϕm1(ω)]Nu−1 =

[(
1− Ns

M

)
+

Ns

MTc

c(ω)

]Nu−1

,

which by the use of the binomial expansion is equal to

ϕ̂mI
(ω) =

Nu−1∑

k=0




Nu − 1

k




(
1− Ns

M

)Nu−k−1 (
Ns

M

1

Tc

)k

c(ω)k. (2.13)

It is worth stressing that the above result is exact for Ns = 1, while it is an approxi-

mation for Ns > 1.

2.4 Probability of Error

Since the data symbols are equally likely, we can assume, without loss of generality,

that d0 = 0. Recall the expression for the test statistic of the system (2.4)

β0 = Eb + mI + n =: Eb + χ

The probability of error is given by

Pe = Pr[β0 < 0] = Pr[χ < −Eb] =

∫ −Eb

−∞
fχ(x)dx

=

∫ −Eb

∞

1

2π

∫ +∞

−∞
ϕmI

(ω)ϕn(ω)e−jωxdωdx (2.14)

where fχ(x) is the pdf of the random variable χ := mI + n, and ϕn(ω) is the noise

characteristic function. We approximate the probability of error of the system by

substituting in (2.14) the approximate expression for the MAI characteristic function
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(2.11). Therefore we have

Pe ≈ P̂e =

∫ −Eb

∞

1

2π

∫ +∞

−∞
ϕ̂mI

(ω)ϕn(ω)e−jωxdωdx

The following theorem gives a final result for P̂e.

Theorem 2.3 The approximate probability of error P̂e is given by

P̂e =

(
1− Ns

M

)Nu−1

Φ

(
−Eb

σn

)
+

Nu−1∑

k=1




Nu − 1

k




(
1− Ns

M

)Nu−k−1 (
Ns

M

1

Tc

)k

×
∫ T+δ

−T

∫ T+δ

−T

. . .

∫ T+δ

−T︸ ︷︷ ︸
k times

Φ

(
−Eb +

∑k
l=1 p(sl)

σn

)
ds1ds2 . . . dsk (2.15)

where Φ(x) is the Gaussian distribution defined as

Φ(x) :=
1√
2π

∫ x

−∞
e−y2/2dy.

The proof of Theorem 2.3 is given in Section 2.5.5.

It is shown in Appendix A.2 that the approximate probability of error expression

converges to the exact probability of error as M −→∞.

2.4.1 Rectangular pulses - Analysis

As a special case, we consider the following example of a rectangular pulse. We

assume T = δ, with Tc = 2T + δ = 3T , and

x(t) =





√
eb

T
; for t ∈ [0, T ]

0 ; elsewhere

As shown in Appendix A.3, the approximate expression for the probability of error
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is given by

P̂e =

(
1− Ns

M

)Nu−1

Φ

(
−

√
Nseb

η0

)
(2.16)

+
1

2

Nu−1∑

k=1




Nu − 1

k




(
1− Ns

M

)Nu−1−k (
Ns

M

)k
(
−

√
Nsη0

2eb

)k

×
k∑

m=0




k

m


 (−1)mFk

[√
eb

2Nsη0

(Ns + k − 2m)

]
,

where Fk(x) is defined as

Fk(x) := 2−ke−x2

[
1F1

(
1+k
2

; 1
2
; x2

)

Γ
(
1 + k

2

) − 2x
1F1

(
1 + k

2
; 3

2
; x2

)

Γ
(

1+k
2

)
]

and where 1F1(a; b; x) is the confluent hypergeometric function of the first kind and

Γ(x) is the gamma function.

2.4.2 Numerical Results

In Figures 2.1, 2.2, and 2.3, the analytical results are plotted for different values of

the parameters and compared with both simulations and the Gaussian approximation

for the MAI. Since the variance of the MAI depends on the desired user’s spreading

sequence (as shown in Appendix A.4), the plots of the Gaussian approximation curves

are obtained assuming the MAI to be a Gaussian random variable with zero mean

and variance

σ2
max =

Ns(Nu − 1)

MTc

(
1 +

Ns − 1

M

) ∫ T+δ

−T

p2(s)ds. (2.17)

Note that for Ns = 1, the expression in (2.17) is equal to the exact variance, while

for Ns > 1 expression (2.17) is shown (again in Appendix A.4) to be an upper bound

on the exact variance of the MAI. As a consequence, the curve of the Gaussian
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Figure 2.1: Performance analysis for 20 users, M=50
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Figure 2.2: Performance analysis for 20 users, M=50

approximation using the actual variance of the MAI would lie somewhere below the

plotted one. As the reader can immediately notice, the accuracy of the analytical
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Figure 2.3: Performance analysis for 40 users, M=50

results presented is very high, while the Gaussian approximation (especially for a

small number of users) gives very poor results for values of the Eb/N0 grater than

10 - 15 dB, getting worse as the Eb/N0 increases. It is worth stressing that the

Gaussian approximation curve using the actual variance would lie below the plotted

one, giving even more optimistic predictions.

Figure 2.4 shows the performance of the system for Ns = 1 and Ns = 2, keeping

the bit rate fixed. Since the bit rate of the system is dictated by the symbol duration,

it equals 1/NsTf ; to keep the bit rate fixed by increasing Ns, the frame has to be

”chopped” in half, and the processing gain M would be halved as well. While reducing

the processing gain enhances the probability of a collision between the desired user’s

signal and an interfering pulse, the coding gain achieved by a repetition code yields

a net moderate improvement in the performance. One further advantage of using a

repetition code is to reduce the peak transmitted power.

Finally, Figure 2.5 shows the dependance of the variance fractional error on the
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Figure 2.4: Performance analysis for 10 users, fixed bit rate

processing gain M and the repetition number Ns. As can be seen, the upper bound

becomes tighter as M increases, while the approximate variance evaluated through

the approximate characteristic function is always very close to the actual variance of

the system.

2.5 Derivations

2.5.1 Proof of Equation (2.7)

We show how the characteristic function (2.6) can be written in the form of (2.7).

Recall the expression of the MAI (2.6):

m1 =
Ns−1∑
j=0

∫ (j+1)Tf

jTf

(a)︷ ︸︸ ︷
v(t− jTf − cjTc)





Ns−1∑
i=0

(b)︷ ︸︸ ︷
x(t− (i + η1)Tf − c

(1)
i Tc − δd

(1)
0 − τ 1)
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mate variance

+
−1∑

i=−Ns

(c)︷ ︸︸ ︷
x(t− (i + η1)Tf − c

(1)
i Tc − δd

(1)
−1 − τ 1)





dt.

In order to have overlapping regions, we need the supports of the different components

of the integrand to overlap; that is, for i = 0, 1, . . . , Ns − 1,

(i)︷ ︸︸ ︷
[jTf + cjTc, jTf + cjTc + T + δ]∩

(ii)︷ ︸︸ ︷
[(i + η1)Tf + c

(1)
i Tc + δd

(1)
0 + τ 1, (i + η1)Tf + c

(1)
i Tc + δd

(1)
0 + τ 1 + T ] 6= ∅

or, for i = −Ns,−Ns + 1, . . . ,−1

(i)︷ ︸︸ ︷
[jTf + cjTc, jTf + cjTc + T + δ]∩

(iii)︷ ︸︸ ︷
[(i + η1)Tf + c

(1)
i Tc + δd

(1)
−1 + τ 1, (i + η1)Tf + c

(1)
i Tc + δd

(1)
−1 + τ 1 + T ] 6= ∅
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where (i), (ii), (iii) are the supports of (a), (b) and (c), respectively. Since τ 1 is

uniformly distributed over [0, Tf ], cjTc and c
(1)
i Tc are always less than Tf for every

i and j, and δ is a delay smaller than Tc and much smaller than Tf . A necessary

condition for the above supports to overlap is the following:





i + η1 = j

or

i + η1 = j − 1

=⇒





i = j − η1

or

i = j − η1 − 1

In order to prove the necessity of the above result, we need to prove that for i ≤
j − η1 − 2 or i ≥ j − η1 + 1, the previous intervals do not overlap.

Assume i ≥ j − η1 + 1 ⇒ i + η1 ≥ j + 1. Then

(i + η1) Tf + c
(1)
i Tc + δd(1)

m + τ 1 ≥ (i + η1) Tf ≥ (j + 1)Tf = jTf + MTc

≥ jTf + (cj + 1)Tc > jTf + cjTc + T + δ

since Tc > T + δ. In the same way, for i + η1 ≤ j − 2

(i + η1) Tf + c
(1)
i Tc + δd(1)

m + τ 1 ≤ (i + η1 + 2) Tf ≤ jTf ≤ jTf + cjTc

For j = 0, 1, . . . , η1− 1, the two solutions i = j − η1 and i = j − η1− 1 are clearly

negative; on the other hand, for j = η1 + 1, η1 + 2, . . . , Ns − 1, the two solutions

i = j − η1 and i = j − η1 − 1 are positive. For j = η1, clearly i = 0 or i = −1.

In light of the above discussion, after defining the function

p(u) :=

∫ T+δ

0

v(t)x(t− u)dt

and the random variables s
(1)
j (di) := c

(1)
j−η1

Tc + δd
(1)
i , the single-interferer component

can be simplified as follows:
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m1 =

η1−1∑
j=0

∫ (j+1)Tf

jTf

v(t− jTf − cjTc)

×
[
x(t− jTf − c

(1)
j−η1

Tc − δd
(1)
−1 − τ 1)

+x(t− (j − 1)Tf − c
(1)
j−η1−1Tc − δd

(1)
−1 − τ 1)

]
dt

+

∫ (η1+1)Tf

η1Tf

v(t− η1Tf − cη1Tc)

×
[
x(t− η1Tf − c

(1)
0 Tc − δd

(1)
0 − τ 1)

+x(t− (η1 − 1)Tf − c
(1)
−1Tc − δd

(1)
−1 − τ 1)

]
dt

+
Ns−1∑

j=η1+1

∫ (j+1)Tf

jTf

v(t− jTf − cjTc)

×
[
x(t− jTf − c

(1)
j−η1

Tc − δd
(1)
−1 − τ 1)

+x(t− (j − 1)Tf − c
(1)
j−η1−1Tc − δd

(1)
−1 − τ 1)

]
dt

=

η1−1∑
j=0

[p(τ 1 + s
(1)
j (d

(1)
−1)− cjTc) + p(τ 1 − Tf + s

(1)
j−1(d

(1)
−1)− cjTc)]

+ [p(τ 1 + s(1)
η1

(d
(1)
0 )− cη1Tc) + p(τ 1 − Tf + s

(1)
η1−1(d

(1)
−1)− cη1Tc)]

+
Ns−1∑

j=η1+1

[p(τ 1 + s
(1)
j (d

(1)
0 )− cjTc) + p(τ 1 − Tf + s

(1)
j−1(d

(1)
0 )− cjTc)]. 2

2.5.2 Proof of Theorem 2.1

Set ai(k) := ci − k, for i = 0, 1, . . . , Ns − 1 and k = 0, 1, . . . , M − 1. Note that

ai(k) ∈ {−M + 1,−M + 2, . . . , M − 1} .

Then, (2.9) can be written as

ϕm1(ω) =
1

Tf

1

MNs+1

M−1∑

k=0

∫ Tc

0




M−1∑

l−1=0

ejωp(s−(a0(k)+M−l−1)Tc)



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×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(s−(ai(k)−li)Tc)+p(s−(ai+1(k)+M−li)Tc)]

)

×



M−1∑

lNs−1=0

ejωp(s−(aNs−1(k)−lNs−1)Tc)


 ds.

Since Tc = 2T + δ, we break the above integration in two non-overlapping regions:

ϕm1(ω) =
1

Tf

1

MNs+1

M−1∑

k=0

∫ T+δ

0




M−1∑

l−1=0

ejωp(s−(a0(k)+M−l−1)Tc)




×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(s−(ai(k)−li)Tc)+p(s−(ai+1(k)+M−li)Tc)]

)

×



M−1∑

lNs−1=0

ejωp(s−(aNs−1(k)−lNs−1)Tc)


 ds

+
1

Tf

1

MNs+1

M−1∑

k=0

∫ Tc

T+δ




M−1∑

l−1=0

ejωp(s−(a0(k)+M−l−1)Tc)




×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(s−(ai(k)−li)Tc)+p(s−(ai+1(k)+M−li)Tc)]

)

×



M−1∑

lNs−1=0

ejωp(s−(aNs−1(k)−lNs−1)Tc)


 ds

=
1

Tf

1

MNs+1

M−1∑

k=0

∫ T+δ

0




M−1∑

l−1=0

ejωp(s−(a0(k)+M−l−1)Tc)


 (2.18)

×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(s−(ai(k)−li)Tc)+p(s−(ai+1(k)+M−li)Tc)]

)

×



M−1∑

lNs−1=0

ejωp(s−(aNs−1(k)−lNs−1)Tc)


 ds

+
1

Tf

1

MNs+1

M−1∑

k=0

∫ 0

−T




M−1∑

l−1=0

ejωp(s−(a0(k)−1+M−l−1)Tc)


 (2.19)

×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(s−(ai(k)−1−li)Tc)+p(s−(ai+1(k)−1+M−li)Tc)]

)



27

×



M−1∑

lNs−1=0

ejωp(s−(aNs−1(k)−1−lNs−1)Tc)


 ds

where the last step is obtained by shifting the second integral by Tc.

Note that ai(k) − 1 = ci − k − 1 = ai(k + 1) for k = 0, 1, . . . , M − 2. Define

ai(M) := ci − M ∈ {−M,−M + 1, . . . ,−1}, and rewrite the above expression by

isolating the term with k = 0 in (2.18) and the term with k = M − 1 in (2.19).

Therefore,

ϕm1(ω) =
1

Tf

1

MNs+1

∫ T+δ

0




M−1∑

l−1=0

ejωp(s−(a0(0)+M−l−1)Tc)


 (2.20)

×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(s−(ai(0)−li)Tc)+p(s−(ai+1(0)+M−li)Tc)]

)

×



M−1∑

lNs−1=0

ejωp(s−(aNs−1(0)−lNs−1)Tc)


 ds

+
1

Tf

1

MNs+1

M−1∑

k=1

∫ T+δ

0




M−1∑

l−1=0

ejωp(s−(a0(k)+M−l−1)Tc)


 (2.21)

×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(s−(ai(k)−li)Tc)+p(s−(ai+1(k)+M−li)Tc)]

)

×



M−1∑

lNs−1=0

ejωp(s−(aNs−1(k)−lNs−1)Tc)


 ds

+
1

Tf

1

MNs+1

M−2∑

k=0

∫ 0

−T




M−1∑

l−1=0

ejωp(s−(a0(k+1)+M−l−1)Tc)


 (2.22)

×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(s−(ai(k+1)−li)Tc)+p(s−(ai+1(k+1)+M−li)Tc)]

)

×



M−1∑

lNs−1=0

ejωp(s−(aNs−1(k+1)−lNs−1)Tc)


 ds

+
1

Tf

1

MNs+1

∫ 0

−T




M−1∑

l−1=0

ejωp(s−(a0(M)+M−l−1)Tc)


 (2.23)
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×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(s−(ai(M)−li)Tc)+p(s−(ai+1(M)+M−li)Tc)]

)

×



M−1∑

lNs−1=0

ejωp(s−(aNs−1(M)−lNs−1)Tc)


 ds

With the simple change of variables r = k+1 in (2.22), combining (2.21) and (2.22)

and rearranging the expression, we have

ϕm1(ω) =
1

Tf

1

MNs+1

M−1∑

k=1

∫ T+δ

−T




M−1∑

l−1=0

ejωp(s−(a0(k)+M−l−1)Tc)




×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(s−(ai(k)−li)Tc)+p(s−(ai+1(k)+M−li)Tc)]

)

×



M−1∑

lNs−1=0

ejωp(s−(aNs−1(k)−lNs−1)Tc)


 ds

+
1

Tf

1

MNs+1

∫ T+δ

0




M−1∑

l−1=0

ejωp(s−(a0(0)+M−l−1)Tc)




×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(s−(ai(0)−li)Tc)+p(s−(ai+1(0)+M−li)Tc)]

)

×



M−1∑

lNs−1=0

ejωp(s−(aNs−1(0)−lNs−1)Tc)


 ds

+
1

Tf

1

MNs+1

∫ 0

−T




M−1∑

l−1=0

ejωp(s−(a0(M)+M−l−1)Tc)




×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(s−(ai(M)−li)Tc)+p(s−(ai+1(M)+M−li)Tc)]

)

×



M−1∑

lNs−1=0

ejωp(s−(aNs−1(M)−lNs−1)Tc)


 ds

=
1

Tf

1

MNs+1

M−1∑

k=1

∫ T+δ

−T

A−1(k)
Ns−2∏
i=0

Ai(k)ANs−1(k)ds (2.24)

+
1

Tf

1

MNs+1

∫ T+δ

0

A−1(0)
Ns−2∏
i=0

Ai(0)ANs−1(0)ds (2.25)
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+
1

Tf

1

MNs+1

∫ 0

−T

A−1(M)
Ns−2∏
i=0

Ai(M)ANs−1(M)ds (2.26)

where, for k = 0, 1, . . . , M , we have defined

A−1(k) :=
M−1∑

l−1=0

ejωp(s−(a0(k)+M−l−1)Tc) (2.27)

Ai(k) :=
M−1∑

li=0

ejω[p(s−(ai(k)−li)Tc)+p(s−(ai+1(k)+M−li)Tc)] (2.28)

ANs−1(k) :=
M−1∑

lNs−1=0

ejωp(s−(aNs−1(k)−lNs−1)Tc) (2.29)

and we have used the following notation:

β∏
i=α

γi :=





γα γα+1 . . . γβ ; for α ≤ β

1 ; for α > β

Note that the support of p(s − mTc) is [mTc − T,mTc + T + δ], which overlaps

[−T, T + δ] only for m = 0. As a consequence, the exponents in the above expression

of the form p(s − (ai(k) − li)Tc) are always zero in the region [−T, T + δ], except

when li = ai(k) and ai(k) ∈ {0, 1, . . . , M − 1}. On the other hand, the exponents of

the form p(s − (ai+1(k) + M − li)Tc) are non-zero only for li = ai+1(k) + M . Now

0 ≤ li ≤ M − 1 =⇒ 0 ≤ ai+1(k) + M ≤ M − 1 =⇒ −M ≤ ai+1(k) ≤ −1. Since

−(M − 1) ≤ ai+1(k) ≤ M − 1, this implies ai+1(k) /∈ {0, 1, . . . ,M − 1}. Set

V0 := M

V1 := ejωp(s) + M − 1

V2 := 2ejωp(s) + M − 2

Since every summation in (2.27)-(2.29) has at most two li’s which make the exponent
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non-zero within the interval [−T, T + δ] (i.e., M − 2 terms in every summation are

identically one), for the k-th integrand in (2.24) the following holds:

A−1(k) =





V0 ; when a0(k) ∈ {0, 1, . . . , M − 1}
V1 ; when a0(k) /∈ {0, 1, . . . , M − 1}

(2.30)

and

ANs−1(k) =





V0 ; when aNs−1(k) /∈ {0, 1, . . . ,M − 1}
V1 ; when aNs−1(k) ∈ {0, 1, . . . ,M − 1}

(2.31)

while the inner term can only be equal to

Ai(k) =





V0 ; when





ai(k) /∈ {0, 1, . . . , M − 1}
&

ai+1(k) ∈ {0, 1, . . . ,M − 1}





V1 ; when









ai(k) ∈ {0, 1, . . . , M − 1}
&

ai+1(k) ∈ {0, 1, . . . ,M − 1}





or



ai(k) /∈ {0, 1, . . . , M − 1}
&

ai+1(k) /∈ {0, 1, . . . ,M − 1}









V2 ; when





ai(k) ∈ {0, 1, . . . , M − 1}
&

ai+1(k) /∈ {0, 1, . . . ,M − 1}





(2.32)
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Contribution of (2.24)

For a specific k, using (2.30)-(2.32), we have

∫ T+δ

−T

A−1(k)
Ns−2∏
i=0

Ai(k)ANs−1(k)ds =

∫ T+δ

−T

V
y(k)
0 V

z(k)
2 V

Ns+1−y(k)−z(k)
1 ds (2.33)

where

y(k) := |{i ∈ {−1, 0, . . . , Ns − 1} such that Ai = V0}|

z(k) := |{i ∈ {0, 1, . . . , Ns − 2} such that Ai = V2}|

Define S := {0, 1, . . . , M − 1}. We now prove the following:

Proposition 2.1 y(k) = z(k) + 1 for every k ∈ S

Proof: We prove this result by induction on Ns. For Ns = 1, (2.33) equals
∫ T+δ

−T

A−1(k) A0(k)ds. Since A−1(k) and A0(k) can only equal V0 or V1 according to the

value of a0(k) as shown in Table 2.1, (2.33) equals
∫ T+δ

−T
V0V1ds. This result means,

Table 2.1: Proof of Proposition 2.1 (I)

a0(k) ∈ S a0(k) /∈ S
A−1(k) V0 V1

A0(k) V1 V0

in terms of y(k) and z(k), that y(k) = 1, and z(k) = 0.

For Ns = 2, (2.33) equals

∫ T+δ

−T

A−1(k)A0(k)A1(k)ds (2.34)

and the values taken by each term in the integrand are shown, according to the

possible values taken by a0(k) and a1(k), in Table 2.2. Therefore, (2.34) equals
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Table 2.2: Proof of Proposition 2.1 (II)

a0(k) ∈ S a0(k) /∈ S
A−1(k) V0 V1

a1(k) ∈ S a1(k) /∈ S a1(k) ∈ S a1(k) /∈ S
A0(k) V1 V2 V0 V1

A1(k) V1 V0 V1 V0

∫ T+δ

−T
V0V

2
1 ds or

∫ T+δ

−T
V 2

0 V1ds, and the relation y(k) = z(k) + 1 still holds in each of

the four columns corresponding to all possible values of a0(k) and a1(k).

Suppose now the hypothesis is true for Ns = 1, 2, . . . , m. We show it is true for

Ns = m + 1. Since {a0(k), a1(k), . . . , am−1} is specified when Ns = m, increasing Ns

by one affects only terms Am−1(k) and Am(k). Specifically, there will be a new term

Am−1(k), whose value depends on (am−1(k), am(k)), which also affects the value of

the new end term Am(k). Note that the values of the exponents y(k) and z(k) change

only when terms equal to V0 or V2 are added or subtracted. The additional middle

term Am−1(k) and the new end term Am(k) take values as shown in Table 2.3. In

Table 2.3: Proof of Proposition 2.1 (III)

(A)
am−1(k) ∈ S

&
am(k) ∈ S

(B)
am−1(k) ∈ S

&
am(k) /∈ S

(C)
am−1(k) /∈ S

&
am(k) ∈ S

(D)
am−1(k) /∈ S

&
am(k) /∈ S

Am−1(k) (new middle term) V1 V2 V0 V1

Am(k) (new end term) V1 V0 V1 V0

Am−1(k) (old end term) V1 V1 V0 V0

comparison no change add V2 subtract V0 subtract V0

add V0 add V0 add V0

Column (A), term Am−1(k) stays the same, while Am(k) equals V1, without affecting

the values of y(k) and z(k). In Column (B), both V0 and V2 are added, incrementing

both y(k) and z(k); therefore, the relation y(k) = z(k) + 1 still holds. Finally, both

in Column (C) and (D), one term equal to V0 is subtracted, while another term V0 is

added, without affecting y(k) and z(k).
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Therefore, the relation y(k) = z(k) + 1 continues to hold for Ns = m + 1. 2

Using Proposition 2.1, (2.24) equals

1

Tf

1

MNs+1

M−1∑

k=1

∫ T+δ

−T




M−1∑

l−1=0

ejωp(s−(a0(k)+M−l−1)Tc)




×
Ns−2∏
i=0

(
M−1∑

li=0

ejω[p(s−(ai(k)−li)Tc)+p(s−(ai+1(k)+M−li)Tc)]

)

×



M−1∑

lNs−1=0

ejωp(s−(aNs−1(k)−lNs−1)Tc)


 ds

=
1

Tf

1

MNs

M−1∑

k=1

∫ T+δ

−T

Mx(k)
(
2ejωp(s) + M − 2

)x(k) (
ejωp(s) + M − 1

)Ns−2x(k)
ds

Contribution of (2.25)

Note that ai(0) = ci ∈ {0, 1, . . . , M − 1} for all i. Therefore, for i ≥ 0,

A−1(0) = V0

Ai(0) = V1 ; i = 0, 1, . . . , Ns − 2

ANs−1(0) = V1

Thus (2.25) equals to

1

Tf

1

MNs+1

∫ T+δ

0

A−1(0)
Ns−2∏
i=0

Ai(0)ANs−1(0)ds

=
1

Tf

1

MNs+1

∫ T+δ

0

M
(
ejωp(s) + M − 1

)Ns
ds

Contribution of (2.26)
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Since ai(M) = ci −M /∈ {0, 1, . . . , M − 1} for all i, for (2.26) the following holds:

A−1(M) = V1

Ai(M) = V1 ; i = 0, 1, . . . , Ns − 2

ANs−1(M) = V0.

Then (2.26) equals

1

Tf

1

MNs+1

∫ 0

−T

A−1(M)
Ns−2∏
i=0

Ai(M)ANs−1(M)ds

=
1

Tf

1

MNs+1

∫ 0

−T

M
(
ejωp(s) + M − 1

)Ns
ds.

Combining (2.25) and (2.26), we have

1

Tf

1

MNs

∫ T+δ

−T

(
ejωp(s) + M − 1

)Ns
ds.

The characteristic function ϕm1(ω) can now be written as

ϕm1(ω) =
1

Tf

1

MNs

M−1∑

k=1

∫ T+δ

−T

M z(k)
(
2ejωp(s) + M − 2

)z(k)

(
ejωp(s) + M − 1

)Ns−2z(k)
ds

+
1

Tf

1

MNs

∫ T+δ

−T

(
ejωp(s) + M − 1

)Ns
ds

which, by setting z(0) := 0, can be rewritten as follows:

ϕm1(ω) =
1

Tf

1

MNs

M−1∑

k=0

∫ T+δ

−T

M z(k)
(
2ejωp(s) + M − 2

)z(k)

(
ejωp(s) + M − 1

)Ns−2z(k)
ds. 2
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2.5.3 Two-step approximation

Note that the following holds:

M z
(
2ejωp(s) + M − 2

)z
=

(
ejωp(s) + M − 1

)2z − (
ejωp(s) − 1

)2z

Since
∣∣ejωp(s) + M − 1

∣∣ À ∣∣ejωp(s) − 1
∣∣, the above expression can be approximated

only by the first term, and the integrand in (2.10) can be approximated as follows:

M z(k)
(
2ejωp(s) + M − 2

)z(k) (
ejωp(s) + M − 1

)Ns−2z(k) ≈ (
ejωp(s) + M − 1

)Ns
(2.35)

Recall the binomial expansion approximation (a + b)n ≈ an + nan−1b, which is valid

when |b| ¿ |a|. Since
∣∣ejωp(s)

∣∣ ¿ |M − 1| for M large, (2.35) can be approximated by

(M − 1)Ns + Nse
jωp(s). Substituting this approximate result into (2.10) leads, after

some manipulations, to (2.11), which is the approximate function used in Theorem 2.2.

2

2.5.4 Proof of Theorem 2.2

ϕ̂(ω) is a characteristic function

We first show that ϕ̂(ω) of (2.11) is indeed a characteristic function, i.e., we prove

that

i) ϕ̂(0) = 1;

ii) ϕ̂(ω) is non-negative definite.

Clearly,

ϕ̂(0) =

(
1− Ns

M

)
+

Ns

M

1

Tc

∫ T+δ

−T

dt = 1

To prove ii), we need to show that
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• ϕ̂(ω) is continuous;

• for any positive integer N , any real ω1, . . . , ωN and any complex ξ1, . . . , ξN , the

sum

S =
N∑

i=1

N∑

k=1

ϕ̂(ωi − ωk)ξiξ̄k

is real and non-negative.

To show that ϕ̂(ω) is continuous in ω, we want to show that

lim
ω→ω0

ϕ̂(ω) = ϕ̂(ω0)

for every ω0. Note that

lim
ω→ω0

ϕ̂(ω) = lim
ω→ω0

{(
1− Ns

M

)
+

Ns

M

1

Tc

∫ T+δ

−T

ejωp(t)dt

}

and we can take the limit inside the integral by using dominated convergence, since
∣∣ejωp(t)

∣∣ ≤ 1,
∫ T+δ

−T
dt = 2T + δ < ∞, and ejωp(t) is a continuous function in ω.

To prove that

S =
N∑

i=1

N∑

k=1

ϕ̂(ωi − ωk)ξiξ̄k

is real and non-negative, we have

S =

(
1− Ns

M

) ∣∣∣∣∣
N∑

k=1

ξk

∣∣∣∣∣

2

+
N∑

i=1

N∑

k=1

Ns

M

1

Tc

∫ T+δ

−T

ej(ωi−ωk)p(t)dt ξiξ̄k

=

(
1− Ns

M

) ∣∣∣∣∣
N∑

k=1

ξk

∣∣∣∣∣

2

+
Ns

M

1

Tc

∫ T+δ

−T

(
N∑

i=1

ξie
jωip(t)

)(
N∑

k=1

ξ̄ke
−jωkp(t)

)
dt

=

(
1− Ns

M

) ∣∣∣∣∣
N∑

k=1

ξk

∣∣∣∣∣

2

+
Ns

M

1

Tc

∫ T+δ

−T

∣∣∣∣∣
N∑

k=1

ξke
jωkp(t)

∣∣∣∣∣

2

dt

which is clearly real and non-negative for M ≥ Ns. 2
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Bound on ∆ϕ(ω)

Let ∆ϕ(ω) := ϕm1(ω) − ϕ̂(ω), and we simplify the expression for the characteristic

function (2.10) by introducing the following notation: a := ejωp(s) + M − 1 and

b := ejωp(s) − 1. Therefore, we rewrite

ϕm1(ω) =
1

Tf

1

MNs

M−1∑

k=0

∫ T+δ

−T

(a− b)z(k)(a + b)z(k)aNs−2z(k)ds

=
1

Tf

M−1∑

k=0

∫ T+δ

−T

( a

M

)Ns
(

1− b2

a2

)z(k)

ds

On the other hand, the approximate characteristic function can be rewritten as fol-

lows:

ϕ̂(ω) =

(
1− Ns

M

)
+

Ns

M

1

Tc

∫ T+δ

−T

ejωp(s)ds =

(
1− Ns

M

)
+

Ns

M

1

Tc

∫ T+δ

−T

(b + 1)ds

= 1 +
Ns

Tc

∫ T+δ

−T

b

M
ds

=
1

Tc

∫ T+δ

−T

(
1 +

b

M

)Ns

ds− 1

Tc

Ns∑

l=2




Ns

l




∫ T+δ

−T

(
b

M

)l

ds

Since 1 + b
M

= a
M

, and recalling that Tf = MTc, we have

ϕ̂(ω) =
1

Tf

M−1∑

k=0

∫ T+δ

−T

( a

M

)Ns

ds− 1

Tc

Ns∑

l=2




Ns

l




∫ T+δ

−T

(
b

M

)l

ds

Then

∆ϕ(ω) =
1

Tf

M−1∑

k=0

∫ T+δ

−T

( a

M

)Ns

[(
1− b2

a2

)z(k)

− 1

]
ds

+ +
1

Tc

Ns∑

l=2




Ns

l




∫ T+δ

−T

(
b

M

)l

ds.
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Since M ≥ 2, M − 2 ≤ |a| ≤ 2 and |b| ≤ 2, this implies
∣∣ b
a

∣∣ ≤ 2
M−2

,
∣∣ a
M

∣∣ ≤ 1, and
∣∣ b
M

∣∣ ≤ 2
M

. Therefore,

|∆ϕ(ω)| ≤ 1

Tf

M−1∑

k=0

∫ T+δ

−T

∣∣∣ a

M

∣∣∣
Ns

∣∣∣∣∣
(

1− b2

a2

)z(k)

− 1

∣∣∣∣∣ ds

+
1

Tc

Ns∑

l=2




Ns

l




∫ T+δ

−T

∣∣∣∣
b

M

∣∣∣∣
l

ds

≤ 1

Tf

M−1∑

k=0

∫ T+δ

−T

∣∣∣ a

M

∣∣∣
Ns

z(k)∑

l=1




z(k)

l




∣∣∣∣
b

a

∣∣∣∣
2l

ds

+
1

Tc

Ns∑

l=2




Ns

l




∣∣∣∣
b

M

∣∣∣∣
l ∫ T+δ

−T

ds

≤ 1

Tf

M−1∑

k=0




[
1 +

(
2

M − 2

)2
]z(k)

− 1




∫ T+δ

−T

ds

+
Ns∑

l=2




Ns

l




(
2

M

)l

.

Since Tf = MTc and 2T + δ = Tc, and using the fact z(k) ≤ bNs

2
c, we have

|∆ϕ(ω)| ≤ 1

M

M−1∑

k=0




[
1 +

(
2

M − 2

)2
]z(k)

− 1


 +

Ns∑

l=2




Ns

l




(
2

M

)l

≤



[
1 +

(
2

M − 2

)2
]bNs

2
c

− 1


 +

[(
1 +

2

M

)Ns

− 1− 2Ns

M

]
= O

(
M−2

)

Consider now |ϕ̂(ω)|.

|ϕ̂(ω)| =

∣∣∣∣
(

1− Ns

M

)
+

Ns

M

1

Tc

∫ T+δ

−T

ejωp(t)dt

∣∣∣∣ ≥
(

1− Ns

M

)
− Ns

M

1

Tc

∣∣∣∣
∫ T+δ

−T

ejωp(t)dt

∣∣∣∣
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≥
(

1− Ns

M

)
− Ns

M

1

Tc

∫ T+δ

−T

∣∣ejωp(t)
∣∣ dt =

(
1− 2Ns

M

)

which is a valid bound for M ≥ 2Ns. Therefore,

∣∣∣∣
∆ϕ(ω)

ϕ̂(ω)

∣∣∣∣ ≤

[[
1 +

(
2

M−2

)2
]bNs

2
c
− 1

]
+

[(
1 + 2

M

)Ns − 1− 2Ns

M

]

(
1− 2Ns

M

) = O
(
M−2

)
. 2

2.5.5 Proof of Theorem 2.3

Recall the test statistic (2.4)

β0 = Eb + mI + n =: Eb + χ.

Since χ is the sum of two independent random variables, its characteristic function

is given by

ϕχ(ω) = ϕmI
(ω)ϕN(ω).

Since n is a Gaussian random variable with zero mean and variance σ2
n = η0Ns (eb −∆e),

its characteristic function is

ϕn(ω) = e−
σ2

nω2

2 .

The probability density of χ is given by

fχ(x) =
1

2π

∫ +∞

−∞
ϕχ(ω)e−jωxdω =

1

2π

∫ +∞

−∞
ϕmI

(ω)e−
σ2

nω2

2 e−jωxdω

By replacing the MAI characteristic function with the approximate characteristic

function ϕ̂mI
(ω), we approximate the pdf of the random variable χ with

f̂χ(x) =
1

2π

∫ +∞

−∞
ϕ̂mI

(ω)e−
σ2

nω2

2 e−jωxdω
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=
1

2π

Nu−1∑

k=0




Nu − 1

k




(
1− Ns

M

)Nu−k−1 (
Ns

M

1

Tc

)k

×
∫ +∞

−∞
c(ω)ke−

σ2
nω2

2 e−jωxdω

=

(
1− Ns

M

)Nu−1
1

2π

∫ +∞

−∞
e−

σ2
nω2

2 e−jωxdω

+
Nu−1∑

k=1




Nu − 1

k




(
1− Ns

M

)Nu−k−1

×
(

Ns

M

1

Tc

)k
1

2π

∫ +∞

−∞
e−

σ2
nω2

2 e−jωx

×
∫ T+δ

−T

∫ T+δ

−T

. . .

∫ T+δ

−T︸ ︷︷ ︸
k times

k∏

l=1

ejωp(sl)ds1ds2 . . . dsk dω

=

(
1− Ns

M

)Nu−1

√
2πσ2

n

e
− x2

2σ2
n +

Nu−1∑

k=1




Nu − 1

k




(
1− Ns

M

)Nu−k−1 (
Ns

M

1

Tc

)k

×
∫ T+δ

−T

∫ T+δ

−T

. . .

∫ T+δ

−T︸ ︷︷ ︸
k times

1

2π

∫ +∞

−∞
e−

σ2
nω2

2 e−jωxejω
∑k

l=1 p(sl)dω ds1ds2 . . . dsk.

Note that the swap in the order of integration is allowed by Fubini’s theorem, since

∫ +∞

−∞

∫ T+δ

−T

∫ T+δ

−T

. . .

∫ T+δ

−T︸ ︷︷ ︸
k times

∣∣∣∣e−
σ2

nω2

2 e−jω(x−∑k
l=1 p(sl))

∣∣∣∣ ds1ds2 . . . dskdω < ∞

Clearly
∫ +∞

−∞
e−

σ2
nω2

2 e−jω(x−∑k
l=1 p(sl))dω =

1√
2πσ2

n

e
−(x−∑k

l=1 p(sl))
2

2σ2
n .

Therefore

f̂χ(x) =

(
1− Ns

M

)Nu−1

√
2πσ2

n

e
− x2

2σ2
n +

Nu−1∑

k=1




Nu − 1

k




(
1− Ns

M

)Nu−k−1 (
Ns

M

1

Tc

)k
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× 1√
2πσ2

n

∫ T+δ

−T

∫ T+δ

−T

. . .

∫ T+δ

−T︸ ︷︷ ︸
k times

e
−(x−∑k

l=1 p(sl))
2

2σ2
n ds1ds2 . . . dsk, (2.36)

and the probability of error is

P̂e = Pr[χ < −Eb] =

∫ −Eb

−∞
fχ(x)dx =

(
1− Ns

M

)Nu−1

√
2πσ2

n

∫ −Eb

−∞
e
− x2

2σ2
n dx

+
Nu−1∑

k=1




Nu − 1

k




(
1− Ns

M

)Nu−k−1 (
Ns

M

1

Tc

)k
1√
2πσ2

n

×
∫ −Eb

−∞

∫ T+δ

−T

∫ T+δ

−T

. . .

∫ T+δ

−T︸ ︷︷ ︸
k times

e
−(x−∑k

l=1 p(sl))
2

2σ2
n ds1ds2 . . . dskdx

=

(
1− Ns

M

)Nu−1

Φ

(
−Eb

σn

)
+

Nu−1∑

k=1




Nu − 1

k




(
1− Ns

M

)Nu−k−1 (
Ns

M

1

Tc

)k

×
∫ T+δ

−T

∫ T+δ

−T

. . .

∫ T+δ

−T︸ ︷︷ ︸
k times

1√
2πσ2

n

∫ −Eb

−∞
e
−(x−∑k

l=1 p(sl))
2

2σ2
n dxds1ds2 . . . dsk

where the swap in the order of integration is allowed by Tonelli’s theorem, since the

integrand is positive. Φ(x) is the Gaussian distribution defined as

Φ(x) :=
1√
2π

∫ x

−∞
e−y2/2dy.

The probability of error is therefore

P̂e =

(
1− Ns

M

)Nu−1

Φ

(
−Eb

σn

)
+

Nu−1∑

k=1




Nu − 1

k




(
1− Ns

M

)Nu−k−1 (
Ns

M

1

Tc

)k

×
∫ T+δ

−T

∫ T+δ

−T

. . .

∫ T+δ

−T︸ ︷︷ ︸
k times

Φ

(
−Eb +

∑k
l=1 p(sl)

σn

)
ds1ds2 . . . dsk. 2
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2.6 Conclusion

We have investigated the performance of a TH-BPPM system in the presence of multi-

user interference. Since the exact characteristic function (and, consequently, the pdf)

for the MAI is not known, and the Gaussian approximation has been shown to be

very poor, a new non-Gaussian approach has been proposed.

Theorem 2.1 presents the exact characteristic function for multi-user interference,

which depends on the desired user’s spreading sequence. In order to obtain a generic

result, the dependance on the spreading sequence has to be eliminated. In The-

orem 2.2, an approximate version of the MAI characteristic function is presented,

where the dependance on the spreading sequence has been avoided; furthermore, it

was shown that the fractional error between the approximate and the exact charac-

teristic functions decreases as the processing gain M increases, specifically, at rate

O(M−2).

The expression for the characteristic function presented in Theorem 2.2 leads to

the principal result of this chapter, presented in Theorem 2.3: An approximate, but

explicit expression for the probability of error of the system for an arbitrary pulse

shape has been derived, which does not involve the pdf of the MAI. The result stated

in Theorem 2.3 involves multiple finite-limits integrals, where the dimension is of the

order of the number of users. For a typical UWB scenario wherein the number of users

is small, this expression can be readily evaluated by numerical techniques. Note that it

is the region of small number of users where the Gaussian approximation performs the

worst. Note also that in the case of rectangular-shaped pulse, the multiple integration

was carried out explicitly, leading to a closed-form expression for the probability of

error given in (2.16).

Finally, it was verified via comparison with simulation that our analytical results

for the probability of error are very accurate.
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System and Technology (published)
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listed in this publication directed and supervised the research which forms the basis

for this chapter.



3 Interference Mitigation via

Beamforming for Impulse Radio

Time Hopping CDMA Systems

“No, she had had enough of interference.”

Jane Austen

THE ability of IR to resolve a large number of multipaths in a dense frequency

selective channel suggests only a marginal improvement in performance by the use

of multiple antennas from a diversity perspective, since performance enhancements

due to diversity very rapidly become a diminishing returns function of the diversity

order [14]. Furthermore, the small size of UWB receivers for in-home or sensor net-

working would result in a very high correlation among antenna elements, reducing

even more the exploitable diversity. To the best of the authors’ knowledge, very

few works dealing with multiple antennas for IR-TH systems exist in the literature.

In [14], some preliminary results and measurements on spatial correlation for IR are

presented. In [28], a strategy for determining the desired user’s angle of arrival (AoA)

is introduced, based on so-called space-time and space-frequency resolution functions.

Reference [66] presents a technique to exploit frequency diversity when the channel

is unknown at the receiver. In [55], the performance improvement of an IR system

in the presence of uncorrelated antennas is presented: the authors study the system

from a purely divesity point of view, considering a frequency selective channel, and

44
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in the absence of interference.

What appears to be lacking in the literature is a strategy to suppress interference

by exploiting multiple antennas and beamforming in a realistic frequency selective,

spatially correlated, channel. One of the main issues still open in TH systems is

the capability to protect the desired user’s signal from both other users’ interference

(see [48]) and NBI. Interference mitigation through beamforming, by using antenna

arrays at the receiver, is addressed in this chapter. Beamforming techniques for

MAI mitigation and NBI suppression are presented and analyzed in the presence of

a frequency selective channel with spatially correlated receiving antennas. In the

literature, a baseband correlator receiver (CR) is commonly considered when dealing

with IR systems [48], [65], [64]. Unfortunately, a baseband CR does not exploit the

practical band-pass nature of an IR system. The presence of a quadrature branch at

the receiver enhances the interference suppression capabilities by fully exploiting the

correlation among in-phase and quadrature components of the received interference

process. We propose a quadrature receiver (QuadR) for IR UWB systems, and we

present some results in terms of interference suppression for both schemes, compared

with maximal ratio combining (MRC), showing that the use of a QuadR greatly

improves the performance, while a baseband CR performs just slightly better than a

system exploiting diversity combining only.

The rest of the chapter is organized as follows: Section 3.1 presents the system

model for an IR TH system, while Section 3.2 describes the QuadR structure, presents

the complex-equivalent received signal, and introduces the MMSE combining scheme.

In Section 3.3, the performance measure used throughout this chapter, namely, the

BER, is introduced, and one of the main results of this chapter is presented in The-

orem 3.1, where an analytical expression for the bit error probability of a system

employing MMSE combining is obtained. Section 3.4 presents some numerical re-

sults in terms of performance of the system in the presence of MAI and NBI. Finally,
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conclusions are drawn in Section 3.5.

3.1 System Model

Assume the desired user transmits the following signal:

str(t) =
√

Eb

+∞∑
i=−∞

(1− 2βbi)wtr(t− iTf − ciTc − δbi − τ0; T ) (3.1)

where Eb is the energy-per-bit, bi is a binary data symbol, taking values 1, 0 with

equal probability, Tf is the frame duration, Tc is the chip duration, {ci}+∞
i=−∞ is an

M -ary pseudo-random sequence of period NP , and τ0 is an asynchronous delay. Also,

wtr(t; T ) is a Gaussian pulse of the form

wtr(t; T ) =





Atr exp
[
− t2

2τ2
P

]
; for |t| ≤ T

2

0 ; for |t| > T
2

(3.2)

where Atr is an appropriate normalization constant, and τP is a parameter related

to the width of the pulse. Note that the parameters β and δ in (3.1) are introduced

in order to include in the same framework both data modulation formats proposed

for IR UWB, namely, binary phase shift keying (BPSK; β = 1, δ = 0) and BPPM

(β = 0, δ = 0.1556 nsec)1.

The transmitted signal goes through a frequency selective multipath channel mod-

eled as a tapped-delay-line2, and it is received in the presence of AWGN and inter-

ference. By considering an antenna array at the receiver with Nr omni-directional

1See [48], [65] for more details.

2Following the seminal work by Turin [56], the directions of arrival of different paths to an omni-
directional antenna in a dense multipath environment result in the sum of attenuated and delayed
copies of the transmitted signal, whose overall effect on the transmitted signal can be modelled as a
weighted tapped-delay-line.
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elements, each of them spaced ∆ from neighboring elements, and modeling the effect

of both transmitting and receiving dipole antennas as derivatives, the signal received

at the l-th element of the array is given by

r`(t) =
√

Eb

+∞∑
i=−∞

Ptot−1∑

h=0

x`h(i)(1− 2βbi)

×w(t− iTf − ciTc − δbi − hTp − `
∆

c
sin θD − τ0; T )

+

Ni∑
n=1

y
(n)
` (t− `

∆

c
sin θn) + n(`)

w (t) (3.3)

for ` = 0, 1, . . . , Nr − 1, where Ptot is the total number of resolvable paths,

{x`h(i)}`=0,...,Nr−1
h=0,...,Ptot−1 are channel attenuation coefficients independent in h (but not in

`), and, in general, non-identically distributed, and assumed to remain constant over

the observation window. Also, Tp is the multipath resolution time, c is the speed of

light, and θD is the desired user’s AoA. We stress that different multipaths received

at an omni-directional antenna from different directions of arrival result in delayed

replicas of the transmitted signal, whose overall effect can be modelled as in [57]. The

term n
(`)
w (t) is AWGN at the `-th sensor with two-sided PSD N0/2, and y

(n)
` (t) is the

n-th (n = 1, . . . , Ni) wide-sense-stationary (WSS) interfering process, whose direction

of arrival is θn. We study the performance of the system in the presence of MAI and

NBI, where y
(n)
` (t) denotes either a UWB interfering user or a narrow-band interferer.

Note that w(t; T ) takes into account the double derivative from the transmitting and

receiving antennas, and is of the form

w(t; T ) =





A
(
1− t2

τ2
P

)
exp [− t2

2τ2
P
] ; for |t| ≤ T

2

0 ; for |t| > T
2

(3.4)

where A is an appropriate normalization constant such that A2
∫ +∞
−∞

(
1− t2

τ2
P

)

exp [− t2

2τ2
P
]dt = 1, so that A =

√
4

3
√

πτP
. The pulse width T is chosen such that
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A2
∫ T/2

−T/2
w2(t; T )dt = 0.99; specifically T = 7.95τP .

We now show that the error made by considering a non-truncated monocycle is

small for an appropriate choice of the parameter T . Consider

ϕ(t) = A

(
1− t2

τ 2
P

)
exp

[
− t2

2τ 2
P

]
(3.5)

with A defined above such that ϕ(t) has unit energy, and let ϕn(t) and ψn(t; T ) repre-

sent the n-th fold convolution of ϕ(t) with itself and w(t; T ) with itself, respectively.

Define the L2-error as

λn(T ) :=

∫ +∞
−∞ [ϕn(t)− ψn(t; T )]2 dt∫ +∞

−∞ ϕ2
n(t)dt

. (3.6)

Proposition 3.1 The L2-error is bounded by λn(T ) ≤ εn P
(

T
τP

)
, where

εn =
22n−1n2n+5/2e−2(n−1)

Γ(2n + 1/2)
(3.7)

and

P(u) =
1

2
Γ

(
1

2
,
(u

2

)2
)
− Γ

(
3

2
,
(u

2

)2
)

+
1

2
Γ

(
5

2
,
(u

2

)2
)

(3.8)

and the bound holds with equality for n = 1.

Proof: See Appendix B.1.

A plot of the above upper bound as a function of T is presented in Fig. 3.1 for

different values of n, and shows that for T = 8τP the L2-error is negligible. Note that

the performance of the system is primarily a function of the received energy, making

the L2-metric appropriate to test the ”goodness” of an approximation. We will show

in Section 3.4, by means of simulations, that this approximation is accurate.
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λ 

Figure 3.1: Upper Bound for λn(T ) for different values of n.

3.2 Receiver Structure

In the literature, a baseband CR is commonly considered when dealing with IR sys-

tems ([48], [65], [64]). Unfortunately, a baseband CR does not exploit the practical

band-pass nature of an IR system (even if no carrier is present, the received spectrum

of an IR system employing a Gaussian monocyle [65] has the vast majority of its

energy at band-pass).We propose a QuadR as shown in Fig. 3.2.

We assume the delay τ0, the AoA θD and the spreading sequence are known for

the desired user. Thus, by focusing on data b0, and considering a RAKE receiver

with P ≤ Ptot fingers at each antenna, the output of the k-th finger at the `-th

antenna is the output of a filter matched to the received waveform and sampled at

t`k = kTp + c0Tc + τ + `∆
c

sin θD. In general, the effect of the interference and noise

would be a function of τ0 and c0. However, since both interference and noise have

been assumed WSS processes, one can assume without any loss of generality that

τ0 = 0 and c0 = 0. By considering a QuadR as shown in Fig. 3.2, and exploiting the
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Figure 3.2: Array Receiver Structure.

mathematical relations between the in-phase and quadrature components of a signal

and its Hilbert transform [40], the complex-equivalent of the sampled output at the

l-th antenna and k-th tap can be written as

r̃`k :=
√

Eb

Ptot−1∑

h=0

x̃`h(0) d0 s̃((k − h)Tp)

+
√

Eb

∑

i6=0

Ptot−1∑

h=0

x̃`h(i) di s̃(iTf − ciTc + (k − h)Tp)

+

Ni∑
n=1

z̃
(n)
` (kTp − `

∆

c
(sin θn − sin θD)) + ñ`k (3.9)

` = 0, . . . , Nr − 1; k = 0, . . . , P − 1

where {x̃`h(i)}h=0,...,Ptot−1
`=0,...,Nr−1 are complex channel taps with i.i.d. real and imaginary

parts, di := (−1)bi is the antipodal equivalent of the bit bi, s̃(t) := s(t) + jŝ(t),

z̃
(n)
` (t) := z

(n)
` (t) + jẑ

(n)
` (t), the symbol ·̂ stands for the Hilbert transform, and s(t) =

(w∗w)(t) is the output of the matched-filter (assumed normalized such that s(0) = 1);

note that the matched-filters for the two modulation formats considered (specifically,
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BPSK and BPPM) are given by

MF :





hBPSK(t) = w(t) ; BPSK

hBPPM(t) = 1
1−ρ

[w(t)− w(t− δ)] ; BPPM
(3.10)

where ρ :=
∫ +∞
−∞ w(t)w(t − δ)dt. The term z

(n)
` (t) is the output of the matched-

filter to the n-th interferer, and ñ`k are zero-mean i.i.d. complex Gaussian random

variables, with independent components and variance per dimension depending on

the modulation format (see [65], [67])

σ2
N :=

1

2
E |ñ`k|2 =





N0 ; BPSK

2N0/(1− ρ) ; BPPM
(3.11)

With the help of [1], it can be shown that for w(t; T ) a truncated Gaussian monocycle,

ŝ(t) also has finite practical duration, i.e., the energy of ŝ(t) outside the interval

[−T/2, T/2] can be neglected. Therefore, one can assume resolvable paths for Tp ≥ T .

Specifically, we have3

s̃(hTp) =





1 ; for h = 0

0 ; for h 6= 0
(3.12)

Also, if the frame length is comparable to the delay spread of the channel, and the mul-

tipath delay profile decays fast enough, the contribution of inter-symbol-interference

(ISI) from frame to frame can be neglected, especially in an interference-limited sce-

nario. Therefore, by defining z̃
(n)
`k := z̃

(n)
` (kTp− `∆

c
(sin θn − sin θD)), Eq. (3.9) can be

simplified to

r̃`k =
√

Ebd0x̃`k +

Ni∑
n=1

z̃
(n)
`k + ñ`k ` = 0, . . . , Nr − 1; k = 0, . . . , P − 1 (3.13)

3It is shown in [67] that s(t) is even, which implies that ŝ(t) is odd, and ŝ(0) = 0.
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where the dependence of the channel taps on the sampling instant has been dropped

for simplicity of notation. We express the above set of equations for k = 0, 1, . . . , P−1,

` = 0, 1, . . . , Nr − 1 in vector form as

r̃ =
√

Eb d0 x̃ +

Ni∑
n=1

z̃(n) + ñ. (3.14)

where x̃ := [x̃0,0, x̃0,1, . . . , x̃0,P−1, x̃1,0, . . . . . . , x̃Nr−1,P−1]
T , and z̃(n) and ñ are defined

analogously. In order to exploit the advantage of MMSE beamforming for inter-

ference suppression, the second order statistics - specifically, the covariance ma-

trix - of the interference is critical. Since the
{
z̃(n)

}Ni

n=1
are zero-mean indepen-

dent random vectors, we can write the covariance matrix of the interference as

Ω :=
∑Ni

n=1 Ω(n) =
∑Ni

n=1 E
[
z̃(n)z̃(n)H

]
, where every element of each covariance matrix

Ω(n) can be readily evaluated in terms of the correlation function (or equivalently the

PSD) of the n-th interferer. Specifically,

Ω
(n)
`Nr+k,`′Nr+k′ := Ω

(n)
`k`′k′ (3.15)

= E

[
z̃

(n)
` (kTp − `

∆

c
(sin θn − sin θD))z̃

(n)
`′ (k′Tp − `′

∆

c
(sin θn − sin θD))

]

Note that, in general, the auto-correlation function can be factored into the prod-

uct of a spatial correlation coefficient and the correlation function of a WSS ran-

dom process [51]. This effect can be intuitively explained as follows: The corre-

lation among antennas is due to some multiplicative spatial coefficients only, inde-

pendent of time, and statistically independent of the interference random process

(see [51], Eq. A-3 for details). For this reason, one can set, in general R̃
(n)
``′ (τ) =

σ
(n)
``′ R̃

(n)(τ) = σ
(n)
``′

[
R(n)(τ) + jR̂(n)(τ)

]
, where R(n)(τ) := E

[
z

(n)
` (t)z

(n)
` (t + τ)

]
, for

every ` = 0, 1, . . . , Nr − 1, and σ
(n)
``′ takes into account the spatial correlation among
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different receiving elements. Therefore

Ω
(n)
`k`′k′ = σ

(n)
``′ R̃

(n)

(
(k − k′)Tp − (`− `′)

∆

c
(sin θn − sin θD)

)
. (3.16)

3.2.1 Baseband Correlator Receiver Output

It is readily shown that the sampled output of a baseband CR is just the real part

of (3.14), normalized to collect the same desired signal’s power of a QuadR. Specifi-

cally,

r(CR) =
√

2Eb d0 <e{x̃}+

Ni∑
n=1

<e
{
z̃(n)

}
+ n (3.17)

where n is a zero-mean real Gaussian random vector with independent components,

and variance σ2
N per dimension. Furthermore, the interference covariance matrix is

simply Ω(CR) = <e {Ω} , where the (`Nr + k, `′Nr + k′)-th element of Ω is defined in

(3.16). Given the above framework, a comparison between different weighting schemes

for QuadR and CR is possible, once the system parameters and the interference

statistical model have been specified.

3.2.2 MMSE combining for Impulse Radio

The receiver forms a test statistic by weighting each element of r by a vector w,

specifically, ζ(d0) = <e
{
wH r̃

}
, and compares it with a zero threshold in order to

make a decision on the transmitted symbol. Different weighting schemes are possible,

and we will focus specifically on MRC and MMSE. The probability of error is given

by Pe = Pr [ζ(d0) < 0].

Note that the two aforementioned combining schemes correspond to the weighting

vectors [59]

wMMSE :=
[
Ω + σ2

NI
]−1

x̃ ; wMRC := x̃ (3.18)

Note also that the above choices for the weights maximize the received Signal-to-
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Interference-plus-Noise Ratio (SINR)4. Specifically, the SINR’s for the above combin-

ing schemes are given by [44]

SINRMMSE = x̃H
[
Ω + σ2

NI
]−1

x̃ and SINRMRC =
(x̃H x̃)2

x̃H [Ω + σ2
NI] x̃

. (3.19)

3.3 Performance Analysis

A common way of comparing the performance of different combining schemes and

different receivers is in terms of BER. Specifically, by considering the received vector

r =
√

Eb d0x +

Ni∑
n=1

z̃(n) + ñ (3.20)

the performances of MMSE and MRC combining, in the presence of Gaussian inter-

ference, are given by

P (MMSE)
e = E

[
Q

(√
Eb x̃H [Ω + σ2

NI]
−1

x̃

)]
(3.21)

Pe(MRC) = E

[
Q

(√
Eb (x̃H x̃)2

x̃H [Ω + σ2
NI] x̃

)]
(3.22)

where 1−Q(x) is the Gaussian distribution, Ω =
∑Ni

n=1 Ω(n) =
∑Ni

n=1 E
[
z̃(n)z̃(n)H

]
is

the interference covariance matrix, and the dependence on the AoAs θ = {θ1, . . . , θNi
}

(see Eq. (3.16)) has been implicitly assumed, and σ2
NI is the noise covariance matrix.

Note that for Gaussian5 channel taps x̃ with mean µ̃ and covariance H, the probability

4We point out that in order to perform MMSE combining, knowledge of the interference-plus-
noise covariance matrix is needed at the receiver. This knowledge can be assumed perfect, or based
on some estimate. While in the following analysis we initially assume a perfect (i.e, ”genie-aided”)
estimate, simulations with standard nonparametric estimates will be also presented.

5A common model for UWB large-scale fading parameters follows the Nakagami-m statistics.
For a reasonable choice of the parameters, a Rician distribution can well approximate a Nakagami
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of error in (3.21) when MMSE combining is employed can be obtained analytically,

as stated below in Theorem 3.1. Set Σ := Eb [Ω + σ2
NI] and define the following:

1. x̆ :=
[
xT

R xT
I

]T
;

2. µ̆ = E [x̆];

3. H̆ := E
[
x̆ x̆T

]
;

4. Ψ̆ :=




[
ΣR + ΣIΣ

−1
R ΣI

]−1
Σ−1

R ΣI

[
ΣR + ΣIΣ

−1
R ΣI

]−1

−Σ−1
R ΣI

[
ΣR + ΣIΣ

−1
R ΣI

]−1 [
ΣR + ΣIΣ

−1
R ΣI

]−1


;

where xR = <e{x̃}, xI = ={x̃}, ΣR = <e{Σ}, and ΣI = ={Σ}. Then

µ̆ :=
[
µT

R
µT

I

]T

(3.23)

µ
R

:= E [xR]

µ
I

:= E [xI ]

H̆ :=




H/2 0

0 H/2




H/2 := E

[(
xR − µ

R

)(
xR − µ

R

)T
]

= E

[(
xI − µ

I

)(
xI − µ

I

)T
]

Theorem 3.1 The probability of error when MMSE combining is employed is given

by

Pe =
1

π

∫ π/2

0

1√∣∣∣H̆
∣∣∣
∣∣∣H̆−1 + Ψ̆

sin2 v

∣∣∣
(3.24)

× exp



−

1

2
µ̆T


I − H̆−T

(
H̆−1 +

Ψ̆

sin2 v

)−T

 H̆−1µ̆



dv

distribution [54]. Therefore, the assumption of non-zero-mean complex Gaussian taps is not unrea-
sonable.
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Proof: See Appendix B.2.

The result is valid for both MMSE-complex and MMSE-real combining schemes,

provided H̆, Ψ̆ and µ̆ are replaced by H, Σ−1
R and µ, respectively, when real weights

are employed.

By specifying the receiver, the interfering process and the channel model, one can

readily compare the above systems in different scenarios.

3.3.1 Advantage of the QuadR

Another measure of performance is given by the average signal-to-noise-and-interference

ratio (SNIR). In particular, we want to show that, when MMSE combining is em-

ployed, the average SNIR for a complex QuadR is higher than it is for a CR. Recall

the definition of Σ = Eb [Ω + σ2
NI]. Also, recall that when a CR is employed, the

received vector is

r(CR) =
√

2Eb d0 xR +

Ni∑
n=1

<e
{
z̃(n)

}
+ n (3.25)

with xR defined in Theorem 3.1. We have the following:

Theorem 3.2 Denote the average SNIR’s of a CR and a QuadR by SNIRR and

SNIRC, respectively. Then, SNIRC ≥ SNIRR.

Proof: See Appendix B.3.

3.3.2 Covariance Matrix Estimation

In practice, the covariance matrix of the interference and noise is not known a priori,

and needs to be estimated from data. In order to perform this estimate, we assume

a pilot signal with known data is transmitted. In a real system, the channel has also

to be estimated from the preamble. Furthermore, an error in the channel estimates

would affect both MRC and MMSE combining, resulting in performance degradation

of both schemes. In order to simplify the analysis and focus on the interference
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cancellation capabilities of the beamformer, we assume that the channel is known

at the receiver so that the signal component can be subtracted from the received

waveform, leaving just the interference and noise components. Thus, let {ν k}K
k=1 be

a set of i.i.d. zero-mean complex Gaussian random vectors of dimension NrP × 1,

represent K independent observations of the interference-plus-noise, with covariance

matrix Σ := E
[
ν k νH

k

]
= Ω + σ2

NI. We define

Σ̂K :=
1

K

K∑

k=1

ν k νH
k (3.26)

where Σ̂K has the following properties [7]:

1. Unbiasedness: E
[
Σ̂K

]
= Σ;

2. Variance of the Error: E
[(

Σ̂
(jk)
K − Σ(jk)

)(
Σ̂

(`p)
K − Σ(`p)

)∗]
= 1

K
Σ(j`)Σ(kp);

3. Convergence: Σ̂K converges in mean-square sense to Σ as K →∞;

where A(jk) indicates the (j, k)-th element of a matrix A, and the symbol ()∗ stands for

the complex conjugate. Therefore, given an estimator with sample size K, the MMSE

weights based on the estimated covariance matrix are given by w MMSE = Σ̂−1
K x.

3.4 Numerical Results

We assume BPSK modulation6, and we set the desired user’s AoA θD equal to 0. The

system and channel parameters are presented in Table 4.1.

We study the performance of different receivers in terms of BER; furthermore, we

look at the behavior of the system in the presence of MAI and NBI. It can be shown

6The results for BPPM modulation do not qualitatively differ from the presented ones, and are
omitted due to space limitations. The use of orthogonal modulation instead of antipodal leads to a
degradation in the performance of all combining schemes.
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Table 3.1: System and Channel Parameters

System Parameters

τP Monocycle parameter 0.0812 nsec
T = 8τP Pulse’s Practical duration 0.65 nsec

Tc Chip Duration Tc = T
Tp Multipath Resolution Tp = T
Tf Frame duration 30 nsec

∆rec Receiver Size 10 cm
M Chips per frame 30
Ptot Total Number of paths 50

that the correlation function of a generic UWB user is R
(n)
MAI(τ) = En

Tf
p(τ), where

En is the n-th user energy-per-bit, and p(t) = F−1{W 4(ω)}, with W (ω) = F{w(t)}.
From [1], p(t) = A4τ 11

P π
√

2π H8

(
t

2τP

)
exp

[
− t2

8τ2
P

]
, where H8(x) is the 8-th order

Hermite polynomial.

By modeling the narrow-band interfering process as a WSS Gaussian process, with

center frequency ωn and base-band equivalent PSD of the formQ(ω) = K1sinc2 (K2ω),

the correlation function after matched-filtering7 is

R
(n)
NBI(τ) = Πn|W (ωn)| 2 Λ(%nτ) cos ωnτ (3.27)

where Πn is the n-th interferer power, ωn and %n are its center frequency and band-

width, respectively, and the function Λ(t) is defined as

Λ(t) :=





1− |t| ; for t ∈ [−1, 1]

0 ; elsewhere
(3.28)

Note that the Hilbert transform of (3.27) is readily shown to be R̂
(n)
NBI(τ) = Πn

7We are implicitly assuming that the bandwidth of the interference is much smaller than the
bandwidth of the matched-filter MF (ω), so that we can approximate the output PSD as Qout(ω) ≈
|MF (ωn)|2 1

2 [Q(ω − ωn) +Q(ω + ωn)]
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|W (ωn)|2 Λ(%nτ) sin ωnτ , leading to an expression for the complex covariance matrix

by the use of Eq. (3.16).

In this section, we assume two well-known UWB channel models. The first model

to be considered is an approximation of the model presented in [10], [11]. In these

latter works, the channel is modelled as a conventional tapped delay line, where the

multipath coefficients are independent Nakagami variables with random fading pa-

rameters. In the numerical results that follow, these parameters are fixed to their

mean values, and the Nakagami-m statistics of the channel taps are approximated

by a Rician distribution, with the Kr parameter related to the m parameter by [54]

Kr =
√

m2−m
m−√m2−m

, for m ≥ 1. The second channel model to be considered is the one

proposed by the IEEE 802.15 Channel Modeling subcommittee [22]. In this model,

the multipaths are assumed to arrive in clusters, and the multipath amplitudes follow

a lognormal fading distribution. Due to the complexity of this model, the uncondi-

tional probability of error is obtained by averaging, via simulation, the conditional

probability of error over different channel realizations. When using the IEEE model,

we use a set of input parameters that corresponds to a line of sight (LOS) situation

with range equal to 0 − 4 m (channel number I in [22]). We also assume spatially

correlated receive antennas, where the correlations among array elements follow the

model presented in [51], with angular delay spread set to π.

First, we consider the advantages of beamforming for MAI mitigation, where we

assume perfect power control among all UWB users. The channel is modeled with

complex Gaussian taps and Kr factor derived from [10]8. Fig. 3.3 shows the BER

8Results were generated with different values of the parameter Kr, in order to evaluate the
sensitivity of the proposed scheme to channel statistics variations. The results show that the relative
performance of MMSE-complex as compared to MMSE-real and MRC does not change significantly,
and have been omitted due to space limitations.
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of the various systems, where 30 UWB users have been considered9, as a function

of the number of receiving elements Nr, for a fixed receiver size of 10 cm, and for 5

collected paths out of 50 at a SNR of 30dB. The performance obtained through the

analytical expression presented in Theorem 3.1 is compared with simulations, show-

ing an essentially perfect match. As the reader can immediately notice, the use of a
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Figure 3.3: MAI Mitigation: BER vs Number of Receiving Elements.

QuadR (i.e., complex weights), as described in Section 3.2, considerably improves the

performance. On the other hand, MMSE combining with CR (i.e., real weights) and

MRC have practically the same performance. We point out that the saturation effect

in the performance of MMSE combining is a consequence of the noise; by increas-

ing the number of receiving antennas over a fixed length array, the SNR as well as

the interference power per antenna decrease, and the system becomes noise-limited,

rather than interference-limited. This effect implies that no further improvement in

the performance can be achieved by adding more elements above a certain saturation

9Note that the Gaussian approximation for such a large number of users is fairly accurate, as
shown in [48].
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number of antennas. This ”saturation threshold” increases with increasing interfer-

ence power above the noise level; in the limiting case of a purely interference-limited

system (where no additive noise is present), there is no saturation effect, and the

more receiving elements that are added, the higher the interference cancellation ca-

pabilities that can be achieved. In other words, by increasing the number of antennas

for a fixed-size receiver, even if diversity improvement saturates due to higher cor-

relation among array elements, the beamformer exploits this correlation to suppress

interference and further improve the performance. On the other hand, no protection

against interference can be achieved with MRC, since MRC accounts only for the fad-

ing. Therefore, the saturation of MRC is primarly due to diversity saturation: after

a certain value, because of the spatial correlation, no significant additional spatial

diversity is introduced by adding more receiving elements, and no improvement in

the performance is noticeable.

Fig. 3.4 shows the performance for the same scenario as Fig. 3.3 for Nr = 6

as a function of the SNR. It is seen that the advantage of MMSE combining with

complex weights increases by increasing the SNR. Fig. 3.5 shows simulations of the
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Figure 3.4: MAI Mitigation: BER vs SNR.
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performance under the same system assumptions of Fig. 3.3, but in the presence of

the 802.15 channel [22], with log-normal attenuation coefficients.
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Figure 3.5: MAI Mitigation: BER vs Number of Receiving Elements. 802.15 Channel.

We plot in Fig. 3.6 the performance of the system when the weights are obtained

through an estimate of the interference-plus-noise covariance matrix, as presented in

Section 3.3.2, for different values of the estimation sample size. The plot presents the

BER for K = 50, K = 100, and K = 200, showing that satisfactory performance

can be achieved at a reasonable complexity. As one would expect, the performance

of the estimator gets worse as the sample size is shortened, while for K = 200, the

performance is very close to the ideal case. Note that the convexity of the performance

for small values of K is due to the tradeoff between interference mitigation and

estimation errors: By increasing the number of receiving elements, while beamforming

becomes more effective in reducing the contribution of interference, the power received

at each element decreases and estimation errors become dominant.

We next consider a narrow-band interferer with center frequency at either ωi = ω0,

or ωi = 3
2
ω0, or ωi = 2ω0, bandwidth equal to one-thousandth of the UWB band-

width, and signal-to-interference ratio (SIR) of -20dB. We consider complex Gaussian
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Figure 3.6: MAI Mitigation: BER vs Number of Receiving Elements. MMSE com-
bining with an estimate of the covariance matrix, for different values of K.

channel taps, a Kr factor derived from [10], and 5 collected paths out of 50. Fig. 3.7
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Figure 3.7: NBI Suppression: BER vs Number of Receiving Elements. 5 Collected
Paths.

shows the performance of different combining schemes as a function of the number

of receiving elements, Nr, for a fixed size receiver. The performances of different
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combining schemes are compared with the ideal case. Note that the same saturation

effect discussed previously is also present for MMSE combining and MRC. As the

reader can notice, the MMSE combining scheme with complex weights outperforms

both other schemes, showing that satisfactory performance can be achieved even in

the presence of strong narrow-band jammers. Fig. 3.8 shows the performance as a

function of the SNR for 6 receiving elements and ωi = ω0; the interference suppression

capabilities of MMSE with QuadR are evident, resulting in a notable improvement

in the performance. On the other hand, the system employing MRC is jammed at a

SIR of -20dB. Fig. 3.9 presents simulations of the performance under the same system
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Figure 3.8: NBI Suppression: BER vs SNR. 5 Collected Paths.

assumptions discussed above, but for the 802.15 channel described in [22]. MMSE

combined with QuadR always outperforms both MRC and MMSE with CR, resulting

in good interference suppression capabilities.

Finally, Fig. 3.10 shows the performance of different combining schemes as a func-

tion of the number of receiving elements in the presence of both MAI and NBI. We

assume 10 UWB users, a SNR of 30dB, and a narrow-band jammer with ωi = ω0

and a SIR of -10dB. We consider complex Gaussian channel taps, a Kr factor derived
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Figure 3.9: NBI Suppression: BER vs Number of Receiving Elements. 802.15 Cahn-
nel, 5 Collected Paths.

from [10], and 5 collected paths out of 50.

1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

10
0

N
r

B
E

R

MAI + NBI suppression; 
Tf = 30nsec; 5 out of 50 paths; 10 users; SNR = 30dB, SIR = −10dB

MMSE Complex
MMSE Real
MMSE Complex, simul
MMSE Real, simul
MRC

MMSE Real

MMSE Complex

MRC

Figure 3.10: MAI and NBI Suppression: BER vs SNR. 5 Collected Paths.



66

3.5 Conclusions

We presented a novel approach to MMSE beamforming for IR UWB systems based

on a QuadR which exploits the correlation among the in-phase and the quadrature

components of the interfering process. The performance of the system in terms of

BER has been analyzed and compared to both MRC and MMSE combining with a

traditional CR. The results show that the proposed combining scheme always outper-

forms MRC and a correlator combined with MMSE, the latter giving effectively no

advantage over diversity combining when dealing with MAI. Furthermore, spatial di-

versity is shown to saturate with a small number of receiving antennas, since the small

size of typically envisioned UWB devices results in high correlation among elements.

On the other hand, beamforming exploits this correlation for interference mitigation,

resulting in a large advantage in terms of BER (and/or capacity) in a highly popu-

lated UWB scenario, as well as in the presence of NBI from other commercial systems

or intentional jammers.

The performance of the system has been also evaluated when a standard nonpara-

metric estimator is adopted to estimate the interference-plus-noise covariance matrix,

for different values of a known sample length. Results show that for an estimation

sample size of 200 symbols, the quality of the estimates is acceptable, and the beam-

former is ”steered” correctly. Therefore, the performance of the system approaches

the ideal ”genie-aided” system. On the other hand, when the estimation time is re-

duced, the performance deteriorates, especially when a large number of antennas is

used.

MMSE beamforming with QuadR has been shown to be a promising technique to

mitigate interference from other UWB users and narrow-band jammers, and, conse-

quently, to boost the capacity of IR systems.
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4 Acquisition and Channel

Estimation for Overlay UWB

Transmission

“Even a broken clock is right twice a day.”

Anonymous

RECENTLY, transmitted reference (TR) systems have been proposed [13], [65],

[43], [24] to overcome the complexity of a RAKE receiver with a large number of fingers

and channel tap estimates. In TR systems, an unmodulated waveform is transmitted

every Nm data-modulated waveforms. The receiver correlates the received signal

with this dirty template in order to make a decision on the transmitted symbol. The

simplicity of this scheme comes at the price of deteriorated performance, arising from

the non-optimality of the receiver in the presence of NBI.

On the other hand, both optimal RAKE and TR systems need to acquire code

and/or symbol synchronization. To the best of the authors’ knowledge, few chapters

deal with acquisition and estimation strategies for UWB systems, and even fewer

consider TR systems in the presence of overlayed NBI. In [32], the authors study the

performance of maximum likelihood channel estimation for IR UWB transmissions,

in the presence of AWGN. In [27], the Cramer-Rao lower bound for UWB IR channel

estimation is derived. In [8], the authors present a semi-blind estimation scheme for

UWB systems in the presence of white noise. Farhamand et al. in [19] analyze the

68



69

performance of pulse timing with dirty templates, also in the presence of AWGN.

In [61], non-coherent code acquisition techniques for TH IR systems are studied, in

the presence of multipaths and AWGN. The authors in [60] present some results on

equal-gain combining for acquisition of TH code division multiple access (CDMA)

systems in the presence of AWGN. The authors in [9] present a maximum likelihood

approach to symbol synchronization for UWB TR systems, also in the presence of

AWGN. Some preliminary considerations on NBI effects on TR systems are presented

in [39], [41], while in [16], a coarse acquisition strategy for spectral-encoded UWB

systems, also in the presence of narrow-band jammer, is presented. The presence of

NBI - if not accounted for - can potentially affect dramatically the performance of

the system.

This chapter presents a general code acquisition strategy that can be applied to

both RAKE (called, from now on, Receiver A) and TR (Receiver B) schemes.

Furthermore, in order to fairly compare both schemes, results for the BER of both

receivers will be presented, assuming that code synchronization had been achieved,

where Receiver A employs the channel estimates in a tapped-delay line correlator

optimized for non-white Gaussian noise, while Receiver B notches the NBI (through

an ideal notch filter) prior to correlating the received signal with a noisy template. The

rest of the paper is organized as follows: in Section 4.1, the transmitted and received

signal models are presented, while Section 4.2 describes the estimation/acquisition

scheme. The probability that the receiver correctly acquires code synchronization

is introduced and analyzed in Section 4.3. When Receiver A is employed, the

receiver jointly estimates the channel attenuation coefficients; the performance of such

a scheme in terms of mean-square-error (MSE) is presented in Section 4.4. Numerical

results and comments are presented in Section 4.5. Finally, we conclude in Section 4.6.



70

4.1 Transmitted and Received Signal

Consider an UWB user transmitting a preamble of known data, in order to let the

receiver achieve code synchronization and perform channel estimation. For our pur-

pose, we assume the transmitted known preamble is a train of ’+1’s; also, we assume

that the receiver observes such a preamble over an observation window of length at

least equal to the preamble duration plus the multipath delay spread. Furthermore,

we assume the length of the preamble to be at least one period of the spreading

sequence. For analytical simplicity, we model the transmitted signal as follows:

str(t) =
√

PW

+∞∑
j=−∞

cjx(t− jT ) (4.1)

where x(t) is a waveform of duration T , and such that 1
T

∫ T

0
|x(t)|2dt = 1, PW is the

transmitted power, while {cj}+∞
j=−∞ is a periodic pseudo-random sequence of period

Nseq; that is, cj+Nseq = cj, ∀j. In order to fairly compare different CDMA schemes,

we set cj = Ac̃j, with A a normalization constant, defined as A := 1√∑Nseq−1

j=0 |c̃j |2
,

such that
∑Nseq−1

j=0 |cj|2 = 1 Note that when {c̃j}+∞
j=−∞ is a sequence of ±1, Eq. (4.1)

represents a direct sequence (DS) CDMA signal. On the other hand, if {c̃j}+∞
j=−∞ is a

sequence of zeros and ones, then Eq. (4.1) can be interpreted as a TH CDMA signal.

The third spreading technique is called bi-orthogonal [69] TH (B-TH) CDMA, for

which {c̃j}+∞
j=−∞ is a sequence of 0,±1. See Fig. 4.1 for details.

We assume the spreading sequence is known at the receiver, whose task is to

synchronize to the correct code lag, as well as estimate the channel. We also as-

sume a slowly-varying propagation channel, so that the channel coefficients can be

considered constant for the entire estimation process. The signal of Eq. (4.1) goes

through a frequency selective channel that can be represented by the impulse re-

sponse hMP (t) =
∑P−1

h=0 α
(0)
h δ(t − hT ), where the

{
α

(0)
h

}P−1

h=0
are channel attenuation

coefficients to be estimated, modelled as jointly distributed random variables, with
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Figure 4.1: Different spreading schemes: (a) DS-CDMA; (b) TH-CDMA; (c) BTH-
CDMA.

unknown distribution. Depending upon the modulation scheme adopted (IR versus

modulated signals), the channel coefficients can be either real or complex. When we

refer to complex channel attenuation coefficients, Eq. (4.1) represents the base-band

equivalent of an radio frequency (RF) modulated signal. Also, the superscript ’(0)’

indicates the true channel coefficients, as opposed to the estimated ones.

The signal is received in colored Gaussian noise:

r(t) =
√

PW

+∞∑
j=−∞

P−1∑

h=0

α
(0)
h cjx(t− (j + h)T − τ) + w(t) (4.2)

where the delay τ is an unknown deterministic delay which depends on the distance

between receiver and transmitter, considered modulo NseqT , taking values in the in-

terval [0, NseqT ], and has to be tracked at the receiver, while w(t) is a zero-mean

wide-sense-stationary colored Gaussian random process, with auto-covariance func-

tion φ(u) := E [w(t)w∗(t + u)], where the symbol ∗ stands for the complex conjugate.

Note that, in general, w(t) represents the sum of thermal noise and NBI.
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For simplicity, we assume τ to be an integer multiple of T , i.e., τ = n0T for some

integer n0. Then

r(t) =
√

PW

+∞∑
j=−∞

P−1∑

h=0

α
(0)
h cjx(t− (j + h + n0)T ) + w(t)

=
√

PW

+∞∑
i=−∞

P−1∑

h=0

α
(0)
h ci−n0x(t− (i + h)T ) + w(t) (4.3)

where we set i = j +n0. Note that n0 can take any value into {0, 1, . . . , Nseq−1}. By

assuming the transmitted power, PW , known at the receiver1, we need to estimate the

channel α0 :=
[
α

(0)
0 α

(0)
1 . . . α

(0)
P−1

]T

, as well as to synchronize to the code lag n0, by

observing the received waveform r(t) over the window [0,MT ], for some integer M >

P . Furthermore, since x(t) has support over the interval [0, T ], the term x(t−(i+h)T )

is non-zero when

0 ≤ t−(i+h)T ≤ T ⇒ (i+h)T ≤ t ≤ (i+h+1)T ⇒ t ∈ [(i + h)T, (i + h + 1)T ] (4.4)

Since t ∈ [0,MT ], the signal component in (4.3) is non-zero only when

[0,MT ] ∩ [(i + h)T, (i + h + 1)T ] 6= ∅

or, equivalently, when −h ≤ i ≤ M − 1− h. Eq. (4.3) can be re-written as

r(t) =
P−1∑

h=0

M−1−h∑

j=−h

α
(0)
h cj−n0x(t− (j + h)T ) + w(t), 0 ≤ t ≤ MT (4.5)

1This assumption is without any loss of generality, since the uncertainty on the signal strength
can be, in general, included in the unknown channel coefficients. For this reason, from now on we
set PW = 1.
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4.2 Data-aided estimation

Let us first define

s(t; α, n) =
P−1∑

h=0

M−1−h∑

j=−h

αhcj−nx(t− (j + h)T ) (4.6)

where P is the number of multipaths. Note that s(t; α, n) represents the desired

signal, parameterized by α and n. If we know the second-order statistics of the noise

process w(t), i.e., its auto-covariance function φ(u), we can use maximum likelihood

estimation (MLE)2 in order to find the optimal estimates α̂ and n̂ for α0 and n0,

respectively. Specifically, we maximize the log-likelihood function as in [58]:

LMLE(r; α, n) = 2

∫ MT

0

q∗(t; α, n)r(t)dt−
∫ MT

0

q∗(t; α, n)s(t; α, n)dt (4.7)

where q(t; α, n) is defined as the solution of the integral relation

s(t; α, n) =

∫ MT

0

q(u; α, n)φ(t− u)du, 0 ≤ t ≤ MT. (4.8)

The maximization of LMLE(r; α, n) can be carried out in two steps:

(a) α̂(n) = argmax
α

LMLE(r; α, n) (4.9)

(b) n̂0 = argmax
n

LMLE(r; α̂(n), n) (4.10)

Note that `MLE(r; n) := LMLE(r; α̂(n), n) is a sufficient statistic for the estimation

of the code lag [64], and the estimate n̂0 obtained through (4.10) is optimal (in a

maximum-likelihood sense). Both estimates n̂0 and α̂(n̂0) are used for Receiver A,

2Conditioning on α0, r(t) is a Gaussian random process. All the results presented in this section
are implicitly conditioned on the actual channel vector α0 to be estimated, assumed constant for
the whole observation window.



74

while only n̂0 is used for Receiver B (see [9]).

In general, φ(u) can be written as φ(u) = N0

2
δ(u) + PIψ(u), where N0/2 is the

two-sided PSD of the white noise, PI is the power of the narrow-band jammer, and

ψ(u) is the interference auto-covariance function, normalized such that ψ(0) = 1.

Then, Eq. (4.8) becomes

s(t; α, n) =
N0

2
q(t; α, n) + PI

∫ MT

0

q(u; α, n)ψ(t− u)du, 0 ≤ t ≤ MT, (4.11)

which is known as the Fredholm integral equation of the second kind, and a solution

for convolutional kernels exists (see [68], Chapter VIII), provided that N0 6= 0; in

most scenarios, the solution of the above integral equation is extremely difficult, and

highly non-linear in the parameters α and n, facts that complicate the estimation

process. An explicit solution to the above integral equation for rational kernels can

be found, for example, in [58]. In order to find an approximate solution for q(t; α, n),

consider the following. Define

Q̃(ω) :=
X(ω)

N0

2
+ PIΨ(ω)

(4.12)

whose inverse Fourier transform, q̃(t), solves the convolutional integral

x(t) =

∫ +∞

−∞
q̃(u)φ(t− u)du. (4.13)

By plugging (4.13) into (4.6), we obtain

s(t; α, n) =
P−1∑

h=0

M−1−h∑

j=−h

αhcj−nx(t− (j + h)T ) (4.14)

=
P−1∑

h=0

M−1−h∑

j=−h

αhcj−n

∫ +∞

−∞
q̃(u)φ(t− u− (j + h)T )du
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=

∫ +∞

−∞

P−1∑

h=0

M−1−h∑

j=−h

αhcj−nq̃(u− (j + h)T )φ(t− u)du

If q̃(t) is approximately zero outside the interval [0, T ], then

s(t; α, n) ≈
∫ MT

0

P−1∑

h=0

M−1−h∑

j=−h

αhcj−nq̃(u− (j + h)T )φ(t− u)du (4.15)

and

q(t; α, n) ≈
P−1∑

h=0

M−1−h∑

j=−h

αhcj−nq̃(t− (j + h)T ) (4.16)

is an approximate solution to the Fredholm integral equation in (4.8). We point out

that when the noise w(t) is white, ψ(u) = 0, and (4.7) reduces to the common integral

version of the log-likelihood function, namely

L
(AWGN)
MLE (r; α, n) =

2

N0

∫ MT

0

s∗(t; α, n)r(t)dt− 1

N0

∫ MT

0

|s(t; α, n)|2 dt, (4.17)

and the solution in (4.16) is exact for any window-of-observation.

Note that the exact solution of (4.8) is, from any practical perspective, unfeasible.

On the other hand, the approximate solution in (4.16) has two major advantages:

1. The receiver does not need to recalculate the front-end filter for every window-

of-observation, since Q̃(ω) can be constructed off-line, with the knowledge of

the received waveform and the interference PSD;

2. The overall processing in terms of the function q(t; α, n) can be regarded as

a weighted tapped-delay line, allowing a simple implementation by standard

digital signal processing techniques;

A plot of Q̃(ω) when x(t) is a Gaussian monocycle [65], [48] and the interference PSD

is modelled as a shifted sinc2 function is presented in Fig. 4.2. As the reader can

notice, the processing filter Q̃(ω) acts as an interference notch-filter, cutting out from
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the spectrum the frequency band occupied by the NBI.

We also point out that the excision from the spectrum of a narrow band will not

drastically affect the energy content of q̃(t) in time. That is, q̃(t) has roughly the

same duration as does x(t). Fig. 4.3 shows a plot of
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ρ(s) := 1−
∫ T/2+s

T/2−s
|q̃(t)|2 dt

∫ +∞
−∞ |q̃(t)|2 dt

(4.18)

for different values of the interference power and center frequency, where x(t) is a

Gaussian monocycle, normalized to have unit energy:

x(t) = A

(
1− (t− T/2)2

τ 2

)
exp

[
−(t− T/2)2

2τ 2

]
(4.19)

where T = 8τ is its effective duration [65], [48]. We also plot on the same figure the

energy content of the monocycle itself; the results show that the energy loss incurred

by truncating q̃(t) is negligible for s ≥ T/2. Therefore, q̃(t) can be assumed - for

practical purposes - to have finite support over [0, T ]. We call q̃T (t) the truncated

version of q̃(t), defined as

q̃T (t) :=





q̃(t) ; t ∈ [0, T ]

0 ; elsewhere
(4.20)

and we set

qapp(t; α, n) =
P−1∑

h=0

M−1−h∑

j=−h

αhcj−nq̃T (t− (j + h)T ) (4.21)

Let us go back to the log-likelihood function in (4.7). By replacing r(t) and

s(t; α, n) with their expressions in Eqs. (4.5), (4.6), respectively, and replacing q(t; α, n)

with the approximate expression in (4.21), an approximate log-likelihood function can

be written as

LAPP (r; α, n) = 2
P−1∑

h=0

M−1−h∑

j=−h

c∗j−nα∗h

∫ MT

0

q̃∗T (t− (j + h)T )r(t)dt (4.22)

−
P−1∑

h=0

P−1∑

k=0

M−1−h∑

j=−h

M−1−k∑

i=−k

c∗j−nci−nα∗hαk

×
∫ MT

0

q̃∗T (t− (j + h)T )x(t− (i + k)T )dt



78

After some manipulations presented in Appendix C.1, one can show that

LAPP (r; α, n) = 2αHC(n) y − EαHC(n) C(n)Hα (4.23)

where

C(n) :=




c−n c−n+1 · · · c−n+M−1

c−n−1 c−n · · · c−n+M−2

...
...

. . .
...

c−n−P+1 c−n−P+2 · · · c−n+M−P




?

P×M

(4.24)

y := [y0 y1 . . . yM−1]
T (4.25)

yp :=

∫ T

0

q̃∗T (t)r(t + pT )dt (4.26)

; p = 0, 1, . . . , M − 1

E =

∫ T

0

q̃∗T (t)x(t)dt (4.27)

y depends implicitly (through r(t)) on the actual parameters α0, n0, and E can

be shown to be a positive quantity3. The maximization of (4.23) can be carried

out in two steps [49]: first, we find the optimal set of channel estimates for every

n = 0, 1, . . . , Nseq − 1, and then we maximize over n. The gradient of (4.23) in α

is [47]

d

dα
LAPP (r; α, n) = 2C(n) y − 2EC(n) C(n)Hα (4.28)

By setting (4.28) to zero, we find the set of channel estimates for a given n. Note that

an explicit solution in α requires the inverse of C(n) C(n)H to exist. This is not true

in general, especially for small M . Therefore, we resort to a more general least-square

3By the use of Parseval’s theorem, E can be expressed as the integral of the spectrum of x(t),
which is always positive, divided by the PSD of the noise, which is also greater than zero for finite
values of N0 and PI .
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solution as

α̂(n) =
1

E
[C(n) C(n)H

]† C(n) y (4.29)

where A† =
(
AHA

)−1
AH is the Moore-Penrose pseudo-inverse of A [6]. By plug-

ging (4.29) into (4.23), we obtain

`APP (r; n) := LAPP (r; α̂(n), n) = yHC(n)H
[C(n) C(n)H

]† C(n) y (4.30)

Note that the receiver will synchronize to the code lag n̂0 which maximizes (4.30),

specifically,

n̂0 := argmax
n=0,1,...,Nseq−1

`APP (r; n) (4.31)

We point out that the code lag estimate n̂0 of (4.31) will be used for both receivers

A and B (see Fig. 4.4).

Figure 4.4: Receiving strategies: (a) RAKE receiver; (b) TR receiver.

We define the probability that the receiver synchronizes on lag m as

PL(m) = Pr [n̂0 = m] = Pr

[
max

n=0,1,...,Nseq−1
`APP (r; n) = `APP (r; m)

]
(4.32)
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Also, we point out that for a given n0, the vector y is a complex Gaussian random

vector, whose statistics are described below.

Recall that y as defined in (4.25) is a Gaussian random vector, where the p-th

element is given by

yp =

∫ T

0

q̃∗T (t)r(t + pT ) ; p = 0, 1, . . . , M − 1 (4.33)

Recalling the expression for r(t), we have

yp =
+∞∑

j=−∞

P−1∑

h=0

cj−n0α
(0)
h

∫ T

0

q̃∗T (t)x(t− (j + h− p)T )dt (4.34)

+

∫ T

0

q̃∗T (t)w(t + pT )dt

Since x(t) has support over [0, T ],

∫ T

0

q̃∗T (t)x(t− (j + h− p)T )dt =





∫ T

0
q̃∗T (t)x(t)dt = E ; j = p− h

0 ; elsewhere
(4.35)

Therefore

yp = E
P−1∑

h=0

α
(0)
h cp−h−n0 + νp (4.36)

where

νp :=

∫ T

0

q̃∗T (t)w(t + pT )dt ; p = 0, . . . , M − 1 (4.37)

are zero-mean complex Gaussian random variables. Recalling the definition of C(n)

in (4.24), it is readily shown that

y = E C(n0)
Hα0 + ν (4.38)

where ν = [ν0 ν1 . . . νM−1]
T .
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Therefore,

µ
y

:= E
[
y
]

= EC(n0)
HE [α0] (4.39)

Ω
y

:= E

[(
y − µ

y

)(
y − µ

y

)H
]

= E2C(n0)
HCov [α0, α0] C(n0) (4.40)

+E
[
ν νH

]

where

E [νpνp′ ] =

∫ T

0

∫ T

0

q̃∗T (t1)q̃T (t2)φ(t1 − t2 − (p− p′)T )dt1dt2 (4.41)

4.3 Probability of correct synchronization

We first define the probability that the receiver synchronizes on lag m, which is the

probability that `APP (r; m) is larger than `APP (r; n), for every n = 0, 1, . . . , Nseq − 1,

n 6= m:

P (m) = Pr
[
max

n
`APP (r; n) = `APP (r; m)

]
(4.42)

Note that the probability of correct synchronization is Psync := P (n0). Eq. (4.42) can

be written as

P (m) = Pr [`APP (r; 0) < `APP (r; m) , `APP (r; 1) < `APP (r; m) , (4.43)

. . . , `APP (r; Nseq − 1) < `APP (r; m)]

where the m-th term is missing. Equivalently,

P (m) = Pr [`APP (r; 0)− `APP (r; m) < 0 , . . . , `APP (r; Nseq − 1)− `APP (r; m) < 0]

(4.44)
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Recalling the expression for `APP (r; n) in (4.30), and by defining

Q(n, m) := C(n)H
[C(n) C(n)H

]† C(n) (4.45)

− C(m)H
[C(m) C(m)H

]† C(m) (n 6= m)

we have

P (m) = Pr
[
yHQ(0,m)y < 0 , . . . , yHQ(Nseq − 1,m)y < 0

]
. (4.46)

Eq. (4.46) can be written as follows:

P (m) = 1− Pr
[
yHQ(0,m)y ≥ 0 or yHQ(1,m)y ≥ 0 . . . or yHQ(Nseq − 1,m)y ≥ 0

]

(4.47)

By the union bound,

Pr
[
yHQ(0,m)y ≥ 0 or yHQ(1,m)y ≥ 0 . . . or yHQ(Nseq − 1,m)y ≥ 0

]

≤
∑

n 6=m

Pr
[
yHQ(n,m)y ≥ 0

]
(4.48)

At the same time, it is easy to see that

P (m) ≤ min
n 6=m

Pr
[
yHQ(n,m)y < 0

]
(4.49)

Therefore one can bound P (m) by

max

{
0 , 1−

∑

n6=m

Pr
[
yHQ(n,m)y ≥ 0

]}
≤ P (m) ≤ min

n 6=m
Pr

[
yHQ(n,m)y < 0

]

(4.50)

Note that the above bounds can be evaluated in a closed form (see Appendix C.2)

when α0 is Gaussian, i.e., y itself is a Gaussian random vector. When α0 is not
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Gaussian, but has a density fα0
(u), the bounds can be evaluated by first conditioning

on α0, and then averaging over its pdf, specifically

PL (m | α0 ) := max

{
0 , 1−

∑

n6=m

Pr
[
yHQ(n,m)y ≥ 0 | α0

]}
≤ (4.51)

P (m | α0 ) ≤ min
n 6=m

Pr
[
yHQ(n,m)y < 0 | α0

]
=: PU (m | α0 )

where P (m | α0 ) is the probability that the receiver synchronizes at lag n̂0 = m,

given α0. Then

∫
. . .

∫
fα0

(u)PL (m | u) du ≤ P (m) ≤
∫

. . .

∫
fα0

(u)PU (m | u) du (4.52)

4.4 Mean-square error of the channel estimates

A sensible measure for the performance of a channel estimator is the MSE. We stress

that Receiver B does not estimate the channel, and thus this section applies only

to Receiver A.

Recalling Eqs. (4.29) and (4.38), we have

α̂(n) =
[C(n)C(n)H

]† C(n) C(n0)
Hα0 +

1

E
[C(n)C(n)H

]† C(n) ν (4.53)

and

α̂(n̂0)− α0 =
{[C(n̂0)C(n̂0)

H
]† C(n̂0) C(n0)

H − I
P×P

}
α0 +

1

E
[C(n̂0)C(n̂0)

H
]† C(n̂0) ν

(4.54)

Thus, ||α̂(n̂0)− α0||2 =
∣∣∣∣A(n̂0)α0 + B(n̂0)ν

∣∣∣∣2, where

A(n) :=
[C(n) C(n)H

]† C(n) C(n0)
H − I

P×P
(4.55)
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and

B(n) :=
1

E
[C(n) C(n)H

]† C(n) (4.56)

Note that A(n0) = 0
P×P

. Clearly, the MSE of an estimator that jointly estimates the

channel and the code lag is larger than the MSE of a “genie-aided” estimator, which

knows the actual code lag a-priori. Therefore,

E ||α̂(n̂0)− α0||2 ≥ E ||α̂(n0)− α0||2 = E
∣∣∣∣B(n0)ν

∣∣∣∣2 = tr
(
B(n0)E

[
ν νH

]
B(n0)

H
)

(4.57)

We stress that the above lower bound represents the lowest achievable MSE: in other

words, the right hand side of (4.57) represents the channel estimation error of a

receiver which already achieved synchronization. We show in Section 4.5 that the

proposed estimation scheme can perform very close to the ideal “genie-aided” esti-

mator, even at relatively small SNR values and window-of-observation lengths. On

the other hand, ||α̂(n̂0)− α0||2 ≤ 2
∣∣∣∣A(n̂0)α0

∣∣∣∣2 + 2
∣∣∣∣B(n̂0)ν

∣∣∣∣2. Note that, by the

theorem of total probability,

E
∣∣∣∣A(n̂0)α0

∣∣∣∣2 =
∑

n6=n0

E
[∣∣∣∣A(n)α0

∣∣∣∣2 | n̂0 = n
]
Pr [n̂0 = n] (4.58)

= E

{∑

n 6=n0

E
[∣∣∣∣A(n)α0

∣∣∣∣2 | n̂0 = n, α0

]
Pr [n̂0 = n | α0 ]

}

Since, from Eq. (4.51), Pr [n̂0 = n | α0 ] = P (n | α0 ) ≤ PU (n | α0 ), we have

E
∣∣∣∣A(n̂0)α0

∣∣∣∣2 ≤ E

{∑

n 6=n0

E
[∣∣∣∣A(n)α0

∣∣∣∣2 | n̂0 = n, α0

]
PU (n | α0 )

}
=: E [G(α0)]

(4.59)

From now on, matrix inequalities are defined, in relation to quadratic forms, as fol-

lows:

Definition 4.1 Given two matrices A and B, we write A ≥ B (resp., A > B), if
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A−B is positive semi-definite (resp., positive definite).

Assuming perfectly orthogonal codes, it is shown in Appendix C.3 that B(n)HB(n) ≤
1

M2E2 C̃
H

C̃, where
[
C̃

]
a,b

= c∗−a+b, for a = 0, 1, . . . , Nseq− 1, b = 0, 1, . . . , M − 1. Thus

E
∣∣∣∣B(n̂0)ν

∣∣∣∣2 = E
[
νHB(n̂0)

HB(n̂0)ν
] ≤ 1

M2E2
tr

(
C̃

H
E

[
ν νH

]
C̃

)
(4.60)

Therefore

tr
(
B(n0)E

[
ν νH

]
B(n0)

H
) ≤ E ||α̂(n̂0)− α0||2 (4.61)

≤ 2E [G(α0)] +
2

M2E2
tr

(
C̃

H
E

[
ν νH

]
C̃

)

We show in Section 4.5 that the above bounds are always quite tight, regardless of

the value of M .

4.5 Numerical Results and Discussion

The parameters used to generate the numerical results are highlighted in Table 4.1.

First, the performance of the system in terms of probability of incorrect synchro-

nization (i.e., 1 − Psync) is shown in Figs. 4.5-4.8. Fig. 4.5 shows the probability

of incorrect synchronization as a function of the SNR, for different values of the

window-of-observation length. The performance is compared with the upper and

lower bounds, and with the performance of the system in the absence of NBI. First,

we point out that the bounds are, in general, quite tight, and become extremely

precise for SNR values larger than 15/20 dB. We also stress that, while the system

not designed for NBI suppression is completely jammed, the proposed scheme can

achieve acceptable performance by effectively cancelling out the jammer. Note that

by increasing the interference bandwidth (Fig. 4.6) from 10−2 to 10−1 × BW (signal),

the system performs worse, and cannot achieve the performance of the ideal system in
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Table 4.1: Parameters used in the numerical results

System Parameters

T Pulse duration 0.25 ns
f0 Center Frequency 7 GHz

BW Bandwidth 3.5 GHz - 10 GHz
Modulation Baseband Gauss. Monocycle [65]

M Window-of-observation 50, 100, 200 (12.8, 25.5, 51 ns)
NP Spreading factor 20

SNRchip SNR per chip SNR(dB) - 10 log(NP )
Nseq Sequence period (in chips) 200
P Multipath components 20

Channel Channel model adopted Cassioli, Win, Molisch [10]

Interference Parameters

fi Center frequency 5, 7, 10 GHz
Bi Bandwidth 10−2, 10−1 ×BW

SIR SIR -10, -20 dB
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Figure 4.5: Probability of incorrect synchronization as a function of the SNR, for
different windows of observation (M=50 ⇒ 12.8 ns; M=200 ⇒ 51 ns). Interference
parameters: fi = 7 GHz, Bi = 10−2 ×BW , SIR = -20 dB

the absence of NBI. This is because the advantage in terms of interference suppression

comes at the price of larger loss in terms of collected signal power when the jammer

becomes wider.
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Figure 4.6: Probability of incorrect synchronization as a function of the SNR, for
different windows of observation (M=50 ⇒ 12.8 ns; M=200 ⇒ 51 ns). Interference
parameters: fi = 7 GHz, Bi = 10−1 ×BW , SIR = -20 dB

Fig. 4.7 shows the performance of the system when the jammer carrier frequency

is not centered at the maximum of the desired signal spectrum, and its bandwidth

is 10−2 × BW (signal). In Fig. 4.8, the effect of the interference center frequency is

studied when its bandwidth is increased from 10−2 to 10−1×BW (signal). The results

are in accordance with intuition, since the system is less “hurt” when the jammer’s

center frequency is not at the maximum of the desired signal’s spectrum; the reason

for this effect lies in the lower energy loss by notching areas of the spectrum with

lower PSD.

When Receiver A is used, the system jointly estimates the code lag and the

channel attenuation coefficients. Fig. 4.9 shows the performance of the system in

terms of MSE of the channel estimates versus SNR, for different lengths of the window-

of-observation, when Bi = 10−2 × BW (signal), and SIR = -20 dB. The analytical

upper and lower bounds are compared with simulations. First, we point out that the

lower bound represents the estimation error that a genie-aided receiver would achieve
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Figure 4.7: Probability of incorrect synchronization as a function of the SNR, for
different windows of observation and interference center frequencies (M=50 ⇒ 12.8
ns; M=200 ⇒ 51 ns). Interference parameters: fi = 4 GHz, Bi = 10−2 ×BW , SIR =
-20 dB
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Figure 4.8: Probability of incorrect synchronization as a function of the SNR, for
different windows of observation and interference center frequencies (M=50 ⇒ 12.8
ns; M=200⇒ 51 ns). Interference parameters: fi = 4, 7 and 10 GHz, Bi = 10−1×BW ,
SIR = -10 dB
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Figure 4.9: Channel estimation error as a function of the SNR, for different windows
of observation (M=50 ⇒ 12.8 ns; M=100 ⇒ 25.6 ns; M=200 ⇒ 51 ns). Interference
parameters: fi = 7 GHz, Bi = 10−2 ×BW , SIR = -20 dB

by knowing the actual code lag n0 a-priori ; this is the error achieved by a receiver

that estimates the channel taps only. Note that the proposed estimator (jointly

estimating the channel and the code lag) approaches the minimum error bound at

SNR ≈ 15/20 dB and relatively small window-of-observation lengths. Note also that

the performance of the estimator improves considerably by increasing the length of the

window-of-observation. Fig. 4.10 compares the channel estimation error for different

window-of-observation lengths, when the interference bandwidth is increased to Bi =

10−1×BW . As the reader can notice, the performance is affected by both the jammer’s

bandwidth and the observation window, and larger observation times are needed to

compensate for a wider jammer.

Finally, a sensible measure of performance is the BER of the two receivers when

code synchronization has been achieved. Fig. 4.11 shows the performance of the two

systems - namely, Receiver A and Receiver B - in terms of simulated BER, for

different values of the system and jammer parameters. For this plot, we assume
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Figure 4.10: Channel estimation error as a function of the SNR, for different windows
of observation and interference bandwidths (M=50 ⇒ 12.8 ns; M=200 ⇒ 51 ns).
Interference parameters: fi = 7 GHz, Bi = 10−2, 10−1 ×BW , SIR = -20 dB

that the same window of length MT is used by both systems: Receiver A uses the

received preamble to estimate the channel through (4.29), while Receiver B stores

the received dirty pulses (after passing them through an ideal notch filter to remove

the NBI) and sums them up to construct a correlating template4. We point out that

Receiver A outperforms TR schemes, at the price of an increase in complexity. The

reason of this effect lies in the design of Receiver A, which estimates the channel

taking into account the presence of NBI, and can ultimately cancel the jammer more

effectively than a notch-filter. In particular, Receiver A can achieve performance

comparable to an ideal scenario where NBI is absent, with relatively short windows

of observation. On the other hand, a larger observation window is critical in order to

improve the performance of Receiver B , especially when the jammer’s bandwidth

increases.

4The aim of summing multiple received dirty templates is to reduce the effect of the zero-mean
Gaussian noise.
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Figure 4.11: Bit error rate as a function of the SNR, for different windows of observa-
tion and interference bandwidths (M=50 ⇒ 12.8 ns; M=200 ⇒ 51 ns). Interference
parameters: fi = 7 GHz, Bi = 10−2, 10−1 ×BW , SIR = -20 dB

4.6 Conclusions

This chapter presents a general code acquisition strategy that can be applied to both

RAKE and TR schemes. We show how the same proposed scheme can be employed

by the receiver in order to jointly estimate the channel and acquire synchronization.

The estimation and acquisition in the presence of AWGN and a narrow-band jammer

are based on an approximate solution to the maximum-likelihood equation.

Several performance measures and means of comparison are presented. Results

show that, while the same strategy can be employed by both TR and RAKE systems

to acquire synchronization, RAKE reception with channel estimation outperforms TR

systems in the presence of NBI, at the price of increased complexity.
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5 Conclusions

“Thence issuing we again beheld the stars.”

Dante Alighieri

ONE of the main issues for UWB communications is the need to operate in

the presence of multiple interference sources: the indoor transmission environments

(such as office spaces or apartment buildings) as well as the large bandwidth impose

stringent conditions for coexistence capabilities with MAI and NBI.

In order to accurately model the interference from other UWB devices, the Gaus-

sian approximation fails in predicting the performance of the system. For this reason,

Chapter 2 was devoted to a new approach, based on a characteristic function argu-

ment, that enabled us to predict the performance very accurately. Since the exact

characteristic function (and, consequently, the pdf) for the MAI is not known, and

the Gaussian approximation has been shown to be very poor, a new non-Gaussian

approach was proposed.

Theorem 2.1 presented the exact characteristic function for multi-user interfer-

ence, which depended on the desired user’s spreading sequence. In order to obtain

a generic result, the dependance on the spreading sequence had to be eliminated.

In Theorem 2.2, an approximate version of the MAI characteristic function was pre-

sented, where the dependance on the spreading sequence was avoided; furthermore,

it was shown that the fractional error between the approximate and the exact char-

acteristic functions decreased as the processing gain M increased, specifically, at rate

O(M−2).

93
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The expression for the characteristic function presented in Theorem 2.2 led to

the principal result of this chapter, presented in Theorem 2.3: An approximate, but

explicit expression for the probability of error of the system for an arbitrary pulse

shape was derived, which did not involve the pdf of the MAI. The result stated in

Theorem 2.3 involved multiple finite-limit integrals, where the dimension was of the

order of the number of users. For a typical UWB scenario, wherein the number of users

is small, this expression could be readily evaluated by numerical techniques. Note

that it was the region of small number of users where the Gaussian approximation

performed the worst. Note also that in the case of a rectangular-shaped pulse, the

multiple integration was carried out explicitly, leading to a closed-form expression

for the probability of error given in (2.16). Finally, it was verified via comparison

with simulation that our analytical results for the probability of error were very

accurate, and represented a novel analytical tool to study the performance of UWB

transmissions in the presence of MAI.

In order to reduce the effects of both MAI and NBI, Chapter 3 presented an

MMSE beamforming approach to reject interference. The use of multiple antennas

- providing marginal improvements from a spatial diversity perspective, given the

large frequency diversity normally available in typical UWB environments - was very

effective from a beamforming perspective to boost the capacity of the system. The

results showed that the proposed combining scheme always outperformed both MRC

and a correlator combined with MMSE, the latter giving effectively no advantage

over diversity combining when dealing with MAI. Furthermore, spatial diversity was

shown to saturate with a small number of receiving antennas, since the small size

of typically envisioned UWB devices results in high correlation among elements. On

the other hand, beamforming exploits this correlation for interference mitigation,

resulting in a large advantage in terms of BER (and/or capacity) in a highly populated

UWB scenario, as well as in the presence of NBI from other commercial systems or
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intentional jammers.

The performance of the system has been also evaluated when a standard nonpara-

metric estimator is adopted to estimate the interference-plus-noise covariance matrix,

for different values of a known sample length. Results show that for an estimation

sample size of 200 symbols, the quality of the estimates is acceptable, and the beam-

former is ”steered” correctly. Therefore, the performance of the system approaches

the ideal ”genie-aided” system. On the other hand, when the estimation time is re-

duced, the performance deteriorates, especially when a large number of antennas is

used.

MMSE beamforming with QuadR has been shown to be a promising technique

to mitigate interference from both other UWB users and narrow-band jammers, and,

consequently, to boost the capacity of IR systems.

The presence of narrow-band jammers can hurt many receiving operations, such

as channel estimation and spreading code acquisition. Chapter 4 presents a joint ac-

quisition/estimation technique based on an approximation of the maximum likelihood

scheme.

We have shown how the same proposed scheme can be employed by the receiver

in order to jointly estimate the channel and acquire synchronization. The estimation

and acquisition in the presence of AWGN and a narrow-band jammer were based on

an approximate solution of the maximum-likelihood equation.

Several performance measures and means of comparison have been presented.

Results showed that, while the same strategy can be employed by both TR and

RAKE systems to acquire synchronization, RAKE reception with channel estimation

outperforms TR systems in the presence of NBI, at the price of increased complexity.



A Derivations for Chapter 2

A.1 Justification of the approximation c
(k)
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To justify the approximation, we show that
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is an M -ary equiprobable random sequence, while
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is a binary equiprobable random sequence, independent from c
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clearly equal to 1
2
δ2, while
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(M − 1)(2M − 1)T 2

c

6
.

Since Tc > δ, for M large, the above ratio is indeed much smaller than one.
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A.2 “Continuity” of the Probability of Error

Denoting the approximate single-interferer characteristic function by ϕ̂m1(ω; M) and

the exact characteristic function by ϕm1(ω), we have already shown that

ϕ̂m1(ω; M)
M→∞−→ ϕm1(ω)

It follows that

ϕ̂mI
(ω; M)ϕn(ω) = [ϕ̂m1(ω; M)]Nu−1 ϕn(ω)

M→∞−→ [ϕm1(ω)]Nu−1 ϕn(ω) = ϕmI
(ω)ϕn(ω)

where ϕn(ω) is the noise characteristic function. We have

β = Eb + mI + n

where n is due to the AWGN, Eb is the signal component due to the desired user,

and mI is the MAI with characteristic function ϕmI
(ω).

The approximate expression for the probability of error, as a function of M , is

P̂e(M) =

∫ −Eb

∞

1

2π

∫ +∞

−∞
ϕ̂mI

(ω; M)ϕn(ω)e−jωxdωdx

We want to show that the approximate expression for the probability of error con-

verges for M large to the exact probability of the system. To show that, we take

the limit as M goes to infinity of the above expression, and we swap the limit inside

the integral using dominated convergence. Since |ϕ̂mI
(ω; M)ϕn(ω)e−jωx| ≤ |ϕn(ω)| ∈

L1(dω), we have:

lim
M→∞

P̂e(M) = lim
M→∞

∫ −Eb

∞

1

2π

∫ +∞

−∞
ϕ̂mI

(ω; M)ϕn(ω)e−jωxdωdx
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=

∫ −Eb

∞

1

2π

∫ +∞

−∞
lim

M→∞
ϕ̂mI

(ω; M)ϕn(ω)e−jωxdωdx

=

∫ −Eb

∞

1

2π

∫ +∞

−∞
ϕmI

(ω)ϕn(ω)e−jωxdωdx = Pe (A.1)

A.3 Probability of Error for rectangular pulses

Assume T = δ, with Tc = 2T + δ = 3T , and

x(t) =





√
eb

T
; for t ∈ [0, T ]

0 ; elsewhere

It can be readily shown that

p(t) =





(
t
T

+ 1
)
eb ; for − T ≤ t < 0

(
1− 2t

T

)
eb ; for 0 ≤ t < T

(
t
T
− 2

)
eb ; for T ≤ t ≤ 2T.

The expression for the probability of error (Equation (2.15)) becomes

P̂e =

(
1− Ns

M

)Nu−1

Φ

(
− Nseb√

Nsebη0

)

+
Nu−1∑

k=1




Nu − 1

k




(
1− Ns

M

)Nu−k−1 (
Ns

M

1

Tc

)k

×
∫ 2T

−T

∫ 2T

−T

. . .

∫ 2T

−T︸ ︷︷ ︸
k times

Φ

(
−Nseb +

∑k
l=1 p(tl)√

Nsebη0

)
dt1dt2 . . . dtk (A.2)

With the goal of simplifying the above expression as much as possible, we write the

j-th integral (with j = 1, 2, . . . , k) as follows:

∫ 2T

−T

Φ

(
−

√
Nseb

η0

− p(tj)√
Nsebη0

−
∑

l 6=j p(tl)√
Nsebη0

)
dtj
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=
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√
Nseb
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tj
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+ 1)eb√
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−
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dtj (A.3)

+

∫ T

0
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η0

− (1− 2tj
T

)eb√
Nsebη0

−
∑

l 6=j p(tl)√
Nsebη0

)
dtj (A.4)

+

∫ 2T

T

Φ

(
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√
Nseb

η0

− (
tj
T
− 2)eb√

Nsebη0

−
∑

l 6=j p(tl)√
Nsebη0

)
dtj (A.5)

=
3T

2eb

∫ eb

−eb

Φ

(
−

√
Nseb

η0

− sj√
Nsebη0

−
∑

l 6=j p(tl)√
Nsebη0
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dsj (A.6)

where the last step is obtained with the change of variables sj = (
tj
T

+ 1)eb, sj =

(1− 2tj
T

)eb and sj = (
tj
T
− 2)eb in (A.3), (A.4) and (A.5), respectively.

Plugging (A.6) into (A.2) and repeating the same argument for every integral, the

approximate probability of error expression is readily found to be

P̂e =

(
1− Ns

M

)Nu−1

Φ

(
−

√
Nseb

η0

)

+
Nu−1∑
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
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(
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)Nu−1−k (
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)k (
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∫ eb
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∫ eb
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−
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η0

−
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l=1 sl√
Nsebη0
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ds1 . . . dsk

where Φ(x) is the Gaussian distribution.

Note that, by setting

yl :=
1

k

√
Nseb

η0

+
sl√

Nsebη0

=⇒ dsl =
√

Nsebη0 dyl
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we have

∫ eb

−eb

. . .

∫ eb
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In order to further simplify the above expression and arrive at a final expression

for the probability of error, we will make use of the following Lemma, which is proven

at the end of this appendix:

Lemma A.1 One can prove by induction the following relationship:

∫ b

a

. . .
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where Gk(x) is the k-th indefinite integral of g(x), defined as
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=
1

2
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k
2

k∑
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(Ns + k − 2m)

]

where (−1)k
√

2
Fk(x) is the k-th integral of Φ(x) (see [1]), and Fk(x) is defined as

Fk(x) := 2−ke−x2

[
1F1

(
1+k
2

; 1
2
; x2
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Γ
(
1 + k

2

) − 2x
1F1

(
1 + k

2
; 3

2
; x2
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Γ
(

1+k
2

)
]

where 1F1(a; b; x) is the confluent hypergeometric function of the first kind and Γ(x) is

the gamma function. Note that this result is derived from Lemma A.1 for g(x) = Φ(x)

and Gk(x) = (−1)k
√

2
Fk(x).

Therefore, the final expression for the probability of error is given by

P̂e =

(
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)Nu−1
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eb
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Proof of Lemma A.1:

We prove it by induction on k. For k = 1, the result is obvious. Assume the

statement true for k = h. We want to show that it is true also for k = h + 1.

∫ b

a

∫ b

a

. . .

∫ b

a︸ ︷︷ ︸
h times

g

(
y +

h∑
i=1

xi

)
dx1 . . . dxhdy
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
 (−1)lGh+1 [(h + 1− l)b + la]

= Gh+1 [(h + 1)b] +
h∑

l=1







h

l


 +




h

l − 1





 (−1)lGh+1 [(h + 1− l)b + la]

+(−1)h+1Gh+1 [(h + 1)a]

It is easy to show that




h

l


 +




h

l − 1


 =




h + 1

l


. Therefore, the above

expression becomes
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h+1∑

l=0




h + 1

l


 (−1)lGh+1 [(h + 1− l)b + la] 2

A.4 Upper bound on the variance of the MAI

Let us recall the expression for the exact single-interferer characteristic function (2.10):

ϕm1(ω) =
1

Tf

1

MNs

M−1∑

k=0

∫ T+δ

−T

M z(k)
(
2ejωp(s) + M − 2

)z(k) (
ejωp(s) + M − 1

)Ns−2z(k)
ds

Define

Ξ0 := {k ∈ {0, 1, . . . , M − 1} : z(k) = 0}

Ξ1 :=

{
k ∈ {0, 1, . . . , M − 1} : z(k) =

Ns

2

}

Ξ2 :=

{
k ∈ {0, 1, . . . , M − 1} : z(k) 6= 0 & z(k) 6= Ns

2

}

Then, we rewrite the above expression of ϕm1(ω) as follows:

ϕm1(ω) =
1

Tf

1

MNs

∑

k∈Ξ0

∫ T+δ

−T

(
ejωp(s) + M − 1

)Ns
ds

+
1

Tf

1

MNs

∑

k∈Ξ1

∫ T+δ

−T

M
Ns
2

(
2ejωp(s) + M − 2

)Ns
2 ds

+
1

Tf

1

MNs

∑

k∈Ξ2

∫ T+δ

−T

M z(k)
(
2ejωp(s) + M − 2

)z(k)

× (
ejωp(s) + M − 1

)Ns−2z(k)
ds

Indicating with |A| the number of elements in a set A, since m1 is zero mean

V ar(m1) = − ∂2ϕm1

∂ω2

∣∣∣∣
ω=0

= |Ξ0| Ns

M2Tc

(
1 +

Ns − 1

M

) ∫ T+δ

−T

p2(s)ds
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+ |Ξ1| Ns

M2Tc

(
1 +

Ns − 2

M

) ∫ T+δ

−T

p2(s)ds

+
Ns

M2Tc

∑

k∈Ξ2

(
1 +

Ns − 1− 2z(k)
Ns

M

)∫ T+δ

−T

p2(s)ds

≤ (|Ξ0|+ |Ξ1|+ |Ξ2|) Ns

M2Tc

(
1 +

Ns − 1

M

) ∫ T+δ

−T

p2(s)ds

=
Ns

MTc

(
1 +

Ns − 1

M

) ∫ T+δ

−T

p2(s)

since |Ξ0| + |Ξ1| + |Ξ2| = M . Because users are independent of each other, the MAI

variance is bounded as follows:

V ar(mI) ≤ Ns (Nu − 1)

MTc

(
1 +

Ns − 1

M

) ∫ T+δ

−T

p2(s) =: σ2
max (A.7)



B Derivations for Chapter 3

B.1 Proof of Proposition 3.1

The Fourier transforms of ϕ(t) and w(t; T ), respectively, are

Φ(u) = Ku2e−
u2τ2

P
2 ; K = Aτ 2

P

√
2πτ 2

P and W (u) = Φ(u) ∗ sin uT/2

u/2
(B.1)

By Parseval’s relationship,

λn(T ) :=

∫ +∞
−∞ [Φn(u)−W n(u)]2 du∫ +∞

−∞ Φ2n(u)du
(B.2)

and by [1]

∫ +∞

−∞
Φ2n(u)du = K2n

∫ +∞

−∞
u4ne−nu2τ2

P du = K2nΓ

(
2n +

1

2

)
(nτ 2

P )−(2n+ 1
2
) (B.3)

Noting thet an − bn = (a − b) [an−1 + an−2b + an−3b2 + . . . + a bn−2 + bn−1], the nu-

merator in (B.2) can be bounded as follows:

∫ +∞

−∞
[Φn(u)−W n(u)]2 du (B.4)

≤ sup
u

∣∣Φn−1(u) + Φn−2(u)W (u) + . . . + W n−1(u)
∣∣
∫ +∞

−∞
[Φ(u)−W (u)]2 du

Note that Φ(u) ≥ 0 for every u. Also, supu Φm(u) = (supu Φ(u))m = Km
(

2
τP

)m

e−m

and comparison of W (u) and Φ(u) shows that supu |W (u)| ≤ supu Φ(u). Thus,
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supu |Wm(u)| ≤ supu Φm(u). Then

∣∣Φn−1(u) + Φn−2(u)W (u) + . . . + W n−1(u)
∣∣ (B.5)

≤ n sup
u

Φn−1(u) = nKn−1

(
2

τ 2
P

)n−1

e−(n−1)

Now

∫ +∞

−∞
[Φ(u)−W (u)]2 du = 2π

∫ +∞

−∞
[ϕ(t)− w(t; T )]2 dt = 2π

∫

|t|>T/2

ϕ2(t)dt

= 2πA2

∫

|t|>T/2

(
1− t2

τ 2
P

)2

e−t2/τ2
P dt = 4πA2τP

∫ +∞

T/2τP

(1− v2)2e−v2

dv (B.6)

Now, note that

∫ +∞

T/2τP

(1− v2)2e−v2

dv =
1

2

∫ +∞

(T/2τP )2

1√
r
(1− 2r2 + r4)e−r2

dr (B.7)

Since the incomplete Gamma function is defined as Γ(a; x) =
∫ +∞

x
ua−1e−udu, we

have

∫ +∞

T/2τP

(1− v2)2e−v2

dv =
1

2
Γ

(
1

2
;

(
T

2τP

)2
)
− Γ

(
3

2
;

(
T

2τP

)2
)

+
1

2
Γ

(
5

2
;

(
T

2τP

)2
)

=: P
(

T

τP

)
(B.8)

It follows from (B.4)-(B.6) that

∫ +∞

−∞
[Φn(u)−W n(u)]2 du ≤ nKn−1

(
2

τ 2
P

)n−1

e−(n−1)4πA2τPP
(

T

τP

)
(B.9)

and this completes the proof. 2
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B.2 Proof of Theorem 3.1

We want to analytically compute Pe = E
[
Q

(√
x̃HΣ−1x̃

)]
for x̃ a non-zero-mean

complex Gaussian random vector of dimension N , with

H := E
[
(x̃− E [x̃ ]) (x̃− E [x̃ ])H

]

and Σ a complex positive-definite covariance matrix of dimension N ×N .

First, we write Σ in terms of real and imaginary parts as Σ = ΣR + jΣI , and

we define Σ−1 = ΨR + jΨI , where ΨR, ΨI are two real positive-definite matrices of

dimension N ×N . It is readily shown that

x̃HΣ−1x̃ =
[
xT

R xT
I

]



ΨR ΨI

−ΨI ΨR







x R

x I


 , (B.10)

where x R = <e{x̃} and x I = ={x̃} are independent components. Also

E [x R] = µ
R

, E [x I ] = µ
I

(B.11)

E

[(
x R − µ

R

)(
x R − µ

R

)T
]

= E

[(
x I − µ

I

)(
x I − µ

I

)T
]

= H/2(B.12)

E

[(
x R − µ

R

)(
x I − µ

I

)T
]

= E

[(
x I − µ

I

)(
x R − µ

R

)T
]

= 0 (B.13)

Since ΣT
I = −ΣI , we have the following:

[ΣR + jΣI ] [ΨR + jΨI ] = IN×N ⇒





ΣRΨR − ΣIΨI = IN×N

ΣIΨR + ΣRΨI = ON×N

(B.14)

⇒





ΨR =
[
ΣR + ΣIΣ

−1
R ΣI

]−1

ΨI = −Σ−1
R ΣI

[
ΣR + ΣIΣ

−1
R ΣI

]−1
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where IN×N and ON×N are N ×N identity and zero matrices, respectively. Let

x̆ :=
[
xT

R xT
I

]T

µ̆ := E [x̆]

H̆ := E
[(

x̆− µ̆
) (

x̆− µ̆
)T

]

Ψ̆ :=




ΨR −ΨI

ΨI ΨR




Note that from the definitions of xR, xI , and from (B.11)-(B.13), it is immediate that

µ̆ =
[
µT µT

]T
(B.15)

H̆ =




H/2 0

0 H/2


 (B.16)

The probability of error can be written as Pe = E

[
Q

(√
x̆T Ψ̆ x̆

)]
. We use

Nuttal’s formula for the Q function:

Q(x) =
1

π

∫ π/2

0

exp

[
− x2

2 sin2 v

]
dv (B.17)

The joint pdf of x̆ is given by

fx̆(u) =
1

(2π)N

∣∣∣H̆
∣∣∣
1/2

exp

[
−1

2
(u− µ̆)T H̆−1(u− µ̆)

]
(B.18)

where |A| denotes the determinant of a matrix A. The unconditional probability of

error is

Pe =
1

(2π)N

∣∣∣H̆
∣∣∣
1/2

∫ +∞

−∞
. . .

∫ +∞

−∞︸ ︷︷ ︸
2N times

1

π

∫ π/2

0

exp

[
−1

2
uT Ψ̆

sin2 v
u

]
(B.19)
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× exp

[
−1

2
(u− µ̆)T H̆−1(u− µ̆)

]
dvdu

We set

(
u− µ̆

)T
H̆−1

(
u− µ̆

)
+ uT B(v)u = (u−m(v))T C(v)−1 (u−m(v)) + k(v) (B.20)

where B(v) = Ψ̆
sin2 v

, and we find C(v), m(v) and k(v). After some algebra, we obtain

C(v) = (H̆−1 + B(v))−1

m(v) = (H̆−1 + B(v))−1H̆−1µ̆ (B.21)

k(v) = µT
[
I − H̆−T (H̆−1 + B(v))−T

]
H̆−1µ̆

Therefore, we can write

Pe =
1

(2π)N

∣∣∣H̆
∣∣∣
1/2

∫ +∞

−∞
. . .

∫ +∞

−∞︸ ︷︷ ︸
2N times

1

π

∫ π/2

0

exp

[
−1

2
k(v)

]

× exp

{
−1

2
[u−m(v)]T C(v)−1 [u−m(v)]

}
dvdu (B.22)

By swapping the order of integration, we have

Pe =
1

π

∫ π/2

0

exp

[
−1

2
k(v)

]
(B.23)

× 1

(2π)N

∣∣∣H̆
∣∣∣
1/2

∫ +∞

−∞
. . .

∫ +∞

−∞︸ ︷︷ ︸
2N times

exp

{
−1

2
[u−m(v)]T C(v)−1 [u−m(v)]

}
du dv

Since the above 2N -folded integral can be written as the integral of a Gaussian
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function, after further algebraic calculations, we obtain

Pe =
1

π

∫ π/2

0

1√∣∣∣H̆
∣∣∣
∣∣∣H̆−1 + Ψ̆

sin2 v

∣∣∣
(B.24)

× exp



−

1

2
µ̆T


I − H̆−T

(
H̆−1 +

Ψ̆

sin2 v

)−T

 H̆−1µ̆



dv 2

B.3 Proof of Theorem 3.2

From (3.19), the SNIR’s when a CR and a QuadR are employed are SNIRR =

2xT
RΣ−1

R xR and SNIRC = x̃HΣ−1x̃, where ΣR = <e {Σ}. From (B.12) and (B.13)

in Appendix B.2,

E
[(

xR − µ
) (

xR − µ
)T

]
= E

[(
xI − µ

) (
xI − µ

)T
]

= H/2 (B.25)

E
[(

xR − µ
) (

xI − µ
)T

]
= E

[(
xI − µ

) (
xR − µ

)T
]

= 0 (B.26)

Also, from (B.10) in Appendix B.2,

x̃HΣ−1x̃ = xT
RΨRxR + xT

I ΨRxI − xT
I ΨIxR + xT

RΨIxI (B.27)

where ΨR =
[
ΣR − ΣT

I Σ−1
R ΣI

]−1
and ΨI = −Σ−1

R ΣI

[
ΣR − ΣT

I Σ−1
R ΣI

]−1
. By using

the relation vT Av = tr
[
AvT v

]
, the average SNIR’s are

SNIRR = 2tr
[
Σ−1

R E
(
xRxT

R

)]
; SNIRC = tr

[
ΨRE

(
xRxT

R

)]
+ tr

[
ΨRE

(
xIx

T
I

)]

(B.28)

Without loss of generality, we can assume that µ
R

= µ
I
. Thus, from (B.25), we have

E
(
xRxT

R

)
= E

(
xIx

T
I

)
= H/2 + µµT . Thus,

SNIRR = tr
[
Σ−1

R H
]
+ 2µT Σ−1

R µ ; SNIRC = tr [ΨRH] + 2µT ΨRµ (B.29)
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The proof that SNIRC ≥ SNIRR will be carried out in two steps. We first

show that ΨR ≥ Σ−1
R , in the sense that, for every v, vT ΨRv ≥ vT Σ−1

R v. We write

ΨR =
(I − Σ−1

R ΣT
I Σ−1

R ΣI

)−1
Σ−1

R , where Σ−1
R is positive definite because it is the

inverse of a positive definite matrix. Therefore, we need to show that, for ev-

ery v, vT
[(I − Σ−1

R ΣT
I Σ−1

R ΣI

)−1 − I
]
v > 0. By an eigendecomposition, we write

Σ−1
R ΣT

I Σ−1
R ΣI = V T ΛV , where Λ is a diagonal matrix with elements λi. Also, since

Σ−1
R ΣT

I Σ−1
R ΣI is positive definite, λi > 0. Thus

vT
[(I − Σ−1

R ΣT
I Σ−1

R ΣI

)−1 − I
]
v = vT

[(I − V T ΛV
)−1 − I

]
v (B.30)

= vT V T
[
(I − Λ)−1 − I]

V v = vT V T ∆V v

where ∆ := (I − Λ)−1 − I, and its i-th element is ∆i = 1
1−λi

− 1 > 0. Therefore, by

calling u = V v, we have vT V T ∆V v =
∑

i ∆iu
2
i > 0.

We now use the following result from [15]: If A1, A2, B1, B2 are positive definite

matrices, with 0 < A1 ≤ B1 and 0 < A2 ≤ B2, then we have 0 < tr [A1A2] ≤
tr [B1B2]. By setting A1 = Σ−1

R , B1 =
(
ΣR − ΣT

I Σ−1
R ΣI

)−1
, and A2 = B2 = H, we

have tr [ΨRH] ≥ tr
[
Σ−1

R H
]
, and SNIRC ≥ SNIRR. 2



C Derivations for Chapter 4

C.1 From Eq. (4.22) to Eq. (4.23)

Let us start from Eq. (4.22), and break the interval of integration [0,MT ] into M

intervals of length T :

LAPP (r; α, n) = 2
+∞∑

j=−∞

P−1∑

h=0

c∗j−nα∗h

M−1∑
p=0

∫ (p+1)T

pT

q̃∗T (t− (j + h)T )r(t)dt (C.1)

−
+∞∑

j=−∞

+∞∑
i=−∞

P−1∑

h=0

P−1∑

k=0

c∗j−nci−nα∗hαk

M−1∑
p=0

∫ (p+1)T

pT

q̃∗T (t− (j + h)T )x(t− (i + k)T )dt

Since x(t) and q̃T (t) have support in [0, T ], we have

∫ (p+1)T

pT

q̃∗T (t− (j + h)T )r(t)dt (C.2)

=





∫ (p+1)T

pT
q̃∗T (t− pT )r(t)dt ; j + h = p ⇒ j = p− h

0 ; j + h 6= p

and

∫ (p+1)T

pT

q̃∗T (t− (j + h)T )x(t− (i + k)T )dt (C.3)

=





∫ (p+1)T

pT
q̃∗T (t− pT )x(t− pT )dt ; j + h = i + k = p

0 ; elsewhere
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Thus

LAPP (r; α, n) = 2
P−1∑

h=0

M−1∑
p=0

c∗p−h−nα
∗
h

∫ (p+1)T

pT

q̃∗T (t− pT )r(t)dt (C.4)

−
P−1∑

h=0

P−1∑

k=0

M−1∑
p=0

c∗p−h−ncp−k−nα∗hαk

∫ (p+1)T

pT

q̃∗T (t− pT )x(t− pT )dt

=
P−1∑

h=0

M−1∑
p=0

α∗h
[
c∗p−h−n

] [
2

∫ T

0

q̃∗T (t)r(t + pT )dt

]

− E
P−1∑

h=0

P−1∑

k=0

α∗hαk

[
M−1∑
p=0

c∗p−h−ncp−k−n

]

= 2αHC(n) y − EαHC(n) C(n)Hα

C.2 Pr
[
yHA y < 0]

From [57], the moment generating function of yHA y, for A Hermitian, and y a

complex Gaussian random vector with mean µ := E
[
y
]

and covariance Σ :=

E
[
(y − µ)(y − µ)H

]
, is

φ(s) := E [exp (sx)] =
1∣∣I − sΣ A

∣∣ exp
{
−µHΣ−1

[
I − (I − sΣ A

)−1
]
µ
}

(C.5)

Alternatively,

φ(s) =
exp

[∑N
n=1

sλn|bn|2
1−sλn

]

∏N
n=1 (1− sλn)vn

(C.6)

where vn is the multiplicity of λn, the n-th eigenvalue of Σ1/2A Σ1/2, N is the total

number of distinct eigenvalues, and |bn|2 :=
∑

k∈Kn
|dk|2, where Kn denotes the set of

indices associated with the n-th distinct eigenvalue. For instance, if λ1 and λ2 have

multiplicities 3 and 2, respectively, then K1 = {1, 2, 3} and K2 = {4, 5}. The terms dn

are the elements of the vector d, defined by the relation d := UH

2
MUH

1
µ , where U

1
is
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the normalized modal matrix1 of Σ−1, M2 := UH

1
Σ−1U

1
, while U

2
is the normalized

modal matrix of M−1UH

1
A U

1
M−1. Note that the moment generating function is

analytic in the whole s plane except at a few isolated poles s = {1/λk}N
k=1.

Lemma C.1 The moment generating function in (C.6) converges to zero as |s| → ∞.

Specifically

lim
|s|→∞

|φ(s)| = 0 (C.7)

Proof: Let s = Reiθ; then

|φ(s)| =
N∏

k=1

∣∣∣ exp
[

sb2kλk

1−sλk

]∣∣∣
|1− sλk|vk

(C.8)

=
N∏

k=1

∣∣∣ exp
[

Reiθb2kλk

1−Reiθλk

]∣∣∣
|1−Reiθλk|vk

=
N∏

k=1

∣∣∣∣ exp

[
Reiθb2kλk(1−Re−iθλ∗k)

(1−Reiθλk)(1−Re−iθλ∗k)

]∣∣∣∣
(
1 + R2 |λk|2 − 2R <e {eiθλk}

)vk/2

=
N∏

k=1

exp

[
Rb2k <e{eiθλk}−R2b2k|λk|2
1+R2|λk|2−2R <e{eiθλk}

]

(
1 + R2 |λk|2 − 2R <e {eiθλk}

)vk/2

Clearly, for vk 6= 0,

N∏

k=1

exp

[
Rb2k <e{eiθλk}−2R2b2k |λk|2
1+R2|λk|2−2R <e{eiθλk}

]

(
1 + R2 |λk|2 − 2R <e {eiθλk}

)vk/2
−→

R→+∞
0 ∀θ 2 (C.9)

C.2.1 Closed form expression for Pr
[
yHA y < 0]

We derive a closed form expression for Pr
[
yHA y < 0

]
by using the residue inversion

formula for the moment generating function.

1The normalized modal matrix V of a matrix Λ is defined by the diagonalization Λ = V H∆ V ,
where V HV = V V H = I
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Assume the eigenvalues are ordered such that

<e

{
1

λ1

}
≤ <e

{
1

λ2

}
≤ . . . ≤ <e

{
1

λN1

}
< 0 < <e

{
1

λN1+1

}
≤ . . . ≤ <e

{
1

λN

}

(C.10)

and such that there are N1 (in general, complex) poles in the left half-plane. By using

Jordan’s lemma and the residue theorem, the pdf of the random variable yHA y can

be written as

f(u) =

N1∑

k=1

fk(u) , u ≤ 0 (C.11)

where fk(u) is the residue of φ(s)e−su at pole 1/λk, for k = 1, . . . , N1. Clearly,

Pr

[
yHA y < 0

]
=

∫ 0

−∞
f(u)du =

N1∑

k=1

∫ 0

−∞
fk(u)du (C.12)

We will now derive a closed-form expression for f(u). For the general case where the

bk’s are non-zero for k = 1, . . . , N1, the N1 poles in the left half-plane are essential

poles. Since fk(u) is the residue of φ(s)e−su at the pole 1/λk, we have

fk(u) = Res
s=1/λk

φ(s)e−su =
1

2πi

∫

Γk

φ(s)e−suds (C.13)

where Γk is a closed contour enclosing only the pole s = 1/λk. First, we decompose

φ(s)e−su = Ak(s)Bk(s, u) for k = 1, . . . , N1, where

Ak(s) :=
N∏

m=1,m6=k

[
(1− sλm)−vm exp

(
s b2

m λm

1− sλm

)]
(C.14)

and

Bk(s, u) := (1− sλk)
−vk exp

(
−su +

s b2
k λk

1− sλk

)
(C.15)

= exp(−su− b2
k)(1− sλk)

−vk exp

(
b2
k

1− sλk

)
.
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With the above definitions, the expression in (C.12) becomes

Pr

[
yHA y < 0

]
=

N1∑

k=1

∫ 0

−∞

1

2πi

∫

Γk

Ak(s)Bk(s, u)dsdu (C.16)

By expanding Bk(s, u) in a power series, we have

Bk(s, u) = exp(−su− b2
k)

∞∑
n=0

b2n
k

n!
(1− sλk)

−n−vk =:
∞∑

n=0

Bk,n(s, u) (C.17)

Therefore

Pr

[
yHA y < 0

]
=

N1∑

k=1

∫ 0

−∞

1

2πi

∫

Γk

∞∑
n=0

Ak(s)Bk,n(s, u)dsdu (C.18)

Note that we would like to swap the infinite sum with the double integral, so that

the integration in s would become the residue of Ak(s)Bk,n(s, u) at 1/λk. First, let

Γk :=
{
s : s = 1/λk + rke

iθk , θ ∈ [0, 2π)
}

(C.19)

be the circle of radius rk centered in s = 1/λk, where rk > 0 has to be chosen such

that no pole other than 1/λk is contained in Γk (i.e., 1/λh 6= Γk, for h 6= k), and Γk

is fully contained in the left half s-plane. Therefore, we need

rk < min

{∣∣∣∣ <e

{
1

λk

}∣∣∣∣ ,min
h6=k

∣∣∣∣
∣∣∣∣

1

λk

− 1

λh

∣∣∣∣
∣∣∣∣
}

(C.20)

Clearly, rk <
∣∣∣ <

{
1
λk

}∣∣∣ = −<e
{

1
λk

}
, since 1/λk is in the left-half plane. Let us write

the integral over Γk in polar coordinates as

1

2πi

∫

Γk

∞∑
n=0

Ak(s)Bk,n(s, u)ds

=
1

2π

∫ 2π

0

rke
iθ

∞∑
n=0

Ak(1/λk + rke
iθ)Bk,n(1/λk + rke

iθ, u)dθ (C.21)
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In order to swap the infinite sum with the double integral in (C.18), we use dominated

convergence, where we need to show that

∣∣Ak(1/λk + rke
iθ)

∣∣ ∣∣Bk,n(1/λk + rke
iθ, u)

∣∣ ≤ gk,n(θ, u) (C.22)

such that
∞∑

n=0

∫ 0

−∞

1

2π

∫ 2π

0

gk,n(θ, u)dθdu < +∞ (C.23)

First, we notice that Ak(s) is analytic over Γk, thus
∣∣Ak(1/λk + rke

iθ)
∣∣ is a continuous

function for θ ∈ [0, 2π). Therefore, we need to bound
∣∣Bk,n(1/λk + rke

iθ, u)
∣∣ only.

Recalling the expression for Bk,n(s, u), we have

Bk,n(1/λk + rke
iθ, u) = exp(−b2

k) exp

[
−u

(
1

λk

+ rke
iθ

)]
b2n
k

n!

(−rkλke
iθ
)−n−vk

= exp(−b2
k) exp

[
−u

<e {λk} − i =m {λk}
||λk||2

]
(C.24)

× exp [−urk (cos θ + i sin θ)]
b2n
k

n!

(−rkλke
iθ
)−n−vk

Therefore,

∣∣Bk,n(1/λk + rke
iθ, u)

∣∣ = exp(−b2
k) exp

[
−u

<e {λk}
||λk||2

]
(C.25)

× exp [−urk cos θ]
b2n
k

n!
r−n−vk
k |λk|−n−vk

Note that, by definition, rk < −<e
{

1
λk

}
= −<e{λk}

||λk||2 . Thus,

exp

[
−u

(<e {λk}
||λk||2

+ rk cos θ

)]
≤ exp

[
−u

(<e {λk}
||λk||2

+ rk

)]
(C.26)
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with <e{λk}
||λk||2 + rk < 0. Therefore,

gk,n(θ, u) =
∣∣Ak(1/λk + rke

iθ)
∣∣ exp(−b2

k)
b2n
k

n!
r−n−vk
k |λk|−n−vk exp

[
−u

(<e {λk}
||λk||2

+ rk

)]

(C.27)

and

∫ 0

−∞

1

2π

∫ 2π

0

gk,n(θ, u)dθdu = exp(−b2
k)

b2n
k

n!
r−n−vk
k |λk|−n−vk αkβk (C.28)

where

αk :=

∫ 0

−∞
exp

[
−u

(<e {λk}
||λk||2

+ rk

)]
du < +∞ (C.29)

βk :=
1

2π

∫ 2π

0

∣∣Ak(1/λk + rke
iθ)

∣∣ dθ < +∞ (C.30)

Thus

∞∑
n=0

∫ 0

−∞

1

2π

∫ 2π

0

gk,n(θ, u)dθdu = αkβk exp(−b2
k)

∞∑
n=0

b2n
k

n!
r−n−vk
k |λk|−n−vk (C.31)

=
αkβk

rvk
k |λk|vk

exp

[
−b2

k

(
1− 1

rk |λk|
)]

< +∞

Let us now go back to Eq. (C.18). Since the swap between the infinite sum and

the double integral is justified, we have

Pr

[
yHA y < 0

]
=

N1∑

k=1

∞∑
n=0

∫ 0

−∞

1

2πi

∫

Γk

Ak(s)Bk,n(s, u)dsdu (C.32)

Note that

1

2πi

∫

Γk

Ak(s)Bk,n(s, u)ds = Res
s=1/λk

Ak(s)Bk,n(s, u) (C.33)
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Recalling the expression for Bk,n(s, u), namely

Bk,n(s, u) = exp(−su− b2
k)

b2n
k

n!
(1− sλk)

−n−vk (C.34)

we have

Res
s=1/λk

Ak(s)Bk,n(s, u) = lim
s→1/λk

1

(vk + n− 1)!

× ∂vk+n−1

∂svk+n−1

[
Ak(s)Bk,n(s, u) (1− 1/λk)

vk+n]

=
(−λk)

−vk−n exp(−b2
k)b

2n
k

(vk + n− 1)!n!

× lim
s→1/λk

∂vk+n−1

∂svk+n−1
[Ak(s) exp(−su)]

=
(−λk)

−vk−n exp(−b2
k)b

2n
k

(vk + n− 1)!n!
(C.35)

×
vk+n−1∑

r=0




vk + n− 1

r


 (−u)vk+n−1−r

× lim
s→1/λk

A
(r)
k (s) exp(−su)

where A
(r)
k (s) is the r-th complex derivative2 of Ak(s) with respect to s.

2Given a complex-valued function

z(s) = z(x + iy) = u(x + iy) + iv(x + iy) (C.36)

with u(s), v(s) real-valued functions, the Cauchy-Riemann differential equations [30]

∂u

∂x
=

∂v

∂y
(C.37)

∂u

∂y
= −∂v

∂x
(C.38)

are necessary and sufficient conditions for the existence of the derivative of z in s, defined as

dz

ds
:= lim

|∆s|→0

z(s + ∆s)− z(s)
∆s

(C.39)
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Lemma C.2 The derivatives of Ak(s), A
(r)
k (s), for r ≥ 1, are defined iteratively as

A
(r)
k (s) =

r−1∑
n=0




r − 1

n


 A

(n)
k (s)g

(r−1−n)
k (s) (C.42)

with

g
(r)
k (s) =

N∑

m=1,m6=k

[
r! vm

(
λm

1− sλm

)r+1

+ (r + 1)! b2
m

(
λm

1− sλm

)r+1
1

1− sλm

]

(C.43)

Proof: We have

A
(1)
k (s) = Ak(s)gk(s) (C.44)

where gk(s) = d
ds

ln Ak(s), defined in the whole s plane except at s = {1/λh}N
h=1, h 6=

k, and its r-th derivative is shown in [34] to have the form as in (C.43). From (C.44),

the result is immediate by the Leibnitz differentiation rule [30] 2.

Since Ak(s) is analytic in s inside the contour Γk, it is therein continuous and

differentiable. Therefore, the limit in (C.35) for s → 1/λk exists and is finite, and

Res
s=1/λk

Ak(s)Bk,n(s, u) =
(−λk)

−vk−n exp(−b2
k)b

2n
k

(vk + n− 1)!n!
(C.45)

×
vk+n−1∑

r=0




vk + n− 1

r


 (−u)vk+n−1−rA

(r)
k (1/λk) exp(−u/λk)

where ∆s = ∆x + i∆y. In particular, the derivative can be defined in either of the following ways:

dz

ds
=

∂u

∂x
+ i

∂v

∂x
(C.40)

dz

ds
=

∂v

∂y
− i

∂u

∂y
(C.41)



121

Since

∫ 0

−∞
(−u)vk+n−1−r exp (−u/λk) du = (−λk)

vk+n−r Γ(vk + n− r) (C.46)

we obtain

Pr

[
yHA y < 0

]
=

N1∑

k=1

∞∑
n=0

exp(−b2
k)b

2n
k

(vk + n− 1)!n!

×
vk+n−1∑

r=0




vk + n− 1

r


 A

(r)
k (1/λk)

Γ(vk + n− r)

(−λk)
r

=

N1∑

k=1

exp(−b2
k)

∞∑
n=0

b2n
k

n!

vk+n−1∑
r=0

1

r!

A
(r)
k (1/λk)

(−λk)
r (C.47)

C.2.2 Complex conjugate pairs of eigenvalues

Let A be a Hermitian symmetric matrix. We now want to show that for complex

conjugate pairs, the pdf of yHA y is, in fact, real. Note that this condition on the

eigenvalues is necessary and sufficient for the matrix A to be Hermitian. Let N and

N1 be even quantities, while, for k odd

λk = λ∗k+1 (C.48)

vk = vk+1 (C.49)

bk = bk+1 (C.50)

By recalling Eq. (C.53), the pdf of yHA y, f(u), is

f(u) =
∞∑

n=0

N1∑

k=1

Res
s=1/λk

Ak(s)Bk,n(s, u) (C.51)
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By the symmetry of the eigenvalues, we write

f(u) =
∞∑

n=0

N1∑

k=1,k odd

[
Res

s=1/λk

Ak(s)Bk,n(s, u) + Res
s=1/λ∗k

Ak+1(s)Bk+1,n(s, u)

]
(C.52)

Thus

f(u) =
∞∑

n=0

N1∑

k=1,k odd

exp(−b2
k)b

2n
k

(vk + n− 1)!n!

vk+n−1∑
r=0




vk + n− 1

r


 (−u)vk+n−1−r (C.53)

×
[
(−λk)

−vk−nA
(r)
k (1/λk) exp(−u/λk) + (−λ∗k)

−vk−nA
(r)
k (1/λ∗k) exp(−u/λ∗k)

]

For k odd, we write Ak(s) isolating the (k + 1)-th term as follows:

Ak(s) = (1− sλ∗k)
−vk exp

(
b2
ksλ

∗
k

1− sλ∗k

)
Ck(s) (C.54)

with

Ck(s) =
N∏

m=1,m6=k,m odd

{[
(1− sλm)−vm exp

(
b2
msλm

1− sλm

)]
(C.55)

×
[
(1− sλ∗m)−vm exp

(
b2
msλ∗m

1− sλ∗m

)]}

Clearly, Ck(s
∗) = Ck(s)

∗. Now, also for k odd, we write Ak+1(s) isolating the k-th

term as

Ak+1(s) = (1− sλk)
−vk exp

(
b2
ksλk

1− sλk

)
Ck(s) (C.56)

It is readily shown that

Ak+1(s
∗) = (1− s∗λk)

−vk exp

(
b2
ks
∗λk

1− s∗λk

)
Ck(s

∗)

=

[
(1− sλ∗k)

−vk exp

(
b2
ksλ

∗
k

1− sλ∗k

)]∗
Ck(s)

∗ = Ak(s)
∗ (C.57)
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We will now show that the above symmetry property is valid for every complex

derivative of Ak+1(s).

Lemma C.3 For every integer r ≥ 0, and for every k = 1, 3, . . . , N1, k odd, the

following symmetry property holds:

A
(r)
k+1(s

∗) = A
(r)
k (s)∗ (C.58)

Proof: From Lemma C.2, we know that

A
(r)
k (s) =

r−1∑
n=0




r − 1

n


 A

(n)
k (s)g

(r−1−n)
k (s) (C.59)

and

g
(r)
k (s) =

N∑

m=1,m6=k

[
r! vm

(
λm

1− sλm

)r+1

+ (r + 1)! b2
m

(
λm

1− sλm

)r+1
1

1− sλm

]

(C.60)

If we can show that g
(r)
k+1(s

∗) = g
(r)
k (s)∗ for k odd, and for all r ≥ 0, we prove

the lemma. For k odd, write g
(r)
k (s) and g

(r)
k+1(s) isolating the (k + 1)-th and k-th

eigenvalue, respectively, as

g
(r)
k (s) =

[
r! vk

(
λ∗k

1− sλ∗k

)r+1

+ (r + 1)! b2
k

(
λ∗k

1− sλ∗k

)r+1
1

1− sλ∗k

]
(C.61)

+Dk,r(s)

g
(r)
k+1(s) =

[
r! vk

(
λk

1− sλk

)r+1

+ (r + 1)! b2
k

(
λk

1− sλk

)r+1
1

1− sλk

]
(C.62)

+Dk,r(s)

with

Dk,r(s) =
N∑

m=1,m6=k,m 6=k+1

[
r! vm

(
λm

1− sλm

)r+1
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+ (r + 1)! b2
m

(
λm

1− sλm

)r+1
1

1− sλm

]

=
N∑

m=1,m6=k,m odd

{
r! vm

[(
λm

1− sλm

)r+1

+

(
λ∗m

1− sλ∗m

)r+1
]

(C.63)

+ (r + 1)! b2
m

[(
λm

1− sλm

)r+1
1

1− sλm

+

(
λ∗m

1− sλ∗m

)r+1
1

1− sλ∗m

]}

Since Dk,r(s
∗) = Dk,r(s)

∗,

g
(r)
k+1(s

∗) =

[
r! vk

(
λk

1− s∗λk

)r+1

+ (r + 1)! b2
k

(
λk

1− s∗λk

)r+1
1

1− s∗λk

]
(C.64)

+Dk,r(s
∗)

=

[
r! vk

(
λ∗k

1− sλ∗k

)r+1

+ (r + 1)! b2
k

(
λ∗k

1− sλ∗k

)r+1
1

1− sλ∗k

]∗

+Dk,r(s)
∗ = g

(r)
k (s)∗ 2

By using Lemma C.3, Eq. (C.53) can be written as

f(u) =
∞∑

n=0

N1∑

k=1,k odd

exp(−b2
k)b

2n
k

(vk + n− 1)!n!

vk+n−1∑
r=0




vk + n− 1

r


 (−u)vk+n−1−r

×
{

(−λk)
−vk−nA

(r)
k (1/λk) exp(−u/λk)

+
[
(−λk)

−vk−nA
(r)
k (1/λk) exp(−u/λk)

]∗}

=
∞∑

n=0

N1∑

k=1,k odd

exp(−b2
k)b

2n
k

(vk + n− 1)!n!

vk+n−1∑
r=0




vk + n− 1

r


 (−u)vk+n−1−r

× <e
{

(−λk)
−vk−nA

(r)
k (1/λk) exp(−u/λk)

}
(C.65)
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C.3 Proof of Eq. (4.60)

Recall the definition of C(n), where the (h, p)-th element is defined as

[C(n)
]
h,p

= c∗−n−h+p ; h = 0, 1, . . . , P − 1, p = 0, 1, . . . , M − 1 (C.66)

and cj is periodic with period Nseq, such that cj+Nseq = cj, ∀j. Then,

[C(n)HC(n)
]
p1,p2

=
P−1∑

h=0

c∗−n−h+p1
c−n−h+p2 ; p1, p2 = 0, 1, . . . , M − 1 (C.67)

which can be written as

[C(n)HC(n)
]
p1,p2

=
P−1+n∑

k=n

c∗−k+p1
c−k+p2 . (C.68)

For 0 ≤ n < Nseq − P + 1, we have P − 1 + n < Nseq, and

P−1+n∑

k=n

c∗−k+p1
c−k+p2 =

Nseq−1∑

k=0

c∗−k+p1
c−k+p2δk(n) (C.69)

where

δk(n) =





1 n ≤ k ≤ P − 1 + n

0 elsewhere
(C.70)

For Nseq − P + 1 ≤ n ≤ Nseq − 1

P−1+n∑

k=n

c∗−k+p1
c−k+p2 =

Nseq−1∑

k=n

c∗−k+p1
c−k+p2 +

P−1+n∑

k=Nseq

c∗−k+p1
c−k+p2

=

Nseq−1∑

k=n

c∗−k+p1
c−k+p2 +

P−1+n−Nseq∑

h=0

c∗Nseq−h+p1
cNseq−h+p2

=

Nseq−1∑

k=n

c∗−k+p1
c−k+p2 +

P−1+n−Nseq∑

h=0

c∗−h+p1
c−h+p2
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=

Nseq−1∑

k=0

c∗−k+p1
c−k+p2δk(n) (C.71)

where

δk(n) =





1 0 ≤ k ≤ P − 1 + n−Nseq or n ≤ k ≤ Nseq − 1

0 elsewhere
(C.72)

Define the Nseq ×M matrix C̃, whose (a, b)-th element is [C̃]a,b = c−a−b. Also, define

∆(n) := diag [δ0(n) δ1(n) . . . δM−1(n)]. Clearly,

C(n)HC(n) = C̃H
∆(n)C̃. (C.73)

Since ∆(n) ≤ I
Nseq×Nseq

, where matrix inequalities are defined according to Defini-

tion 4.1,

C(n)HC(n) = C̃H
∆(n)C̃ ≤ C̃H C̃. (C.74)

For perfectly orthogonal codes, B(n) = 1
MEC(n); thus

B(n)HB(n) =

(
1

ME
)2

C(n)HC(n) =

(
1

ME
)2

C̃
H

∆(n) C̃ ≤ 1

M2E2
C̃

H
C̃ (C.75)



Bibliography

[1] M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions with
formulas, graphs, and mathematical tables, New York: Dover Publications, 1972.

[2] H.R. Ahmadi and M. Nasiri-Kenari, “Performance analysis of time-hopping
ultra-wideband systems in multipath fading channels (uncoded and coded
schemes)”, The 13th IEEE Int. Symp. on Personal, Indoor and Mobile Radio
Communications, 2002, pp. 1694-1698.

[3] B. Allen, T. Brown, K. Schwieger, E. Zimmermann, W. Malik, D. Edwards,
L. Ouvry, and I. Oppermann, “Ultra Wideband: Applications, Technology and
Future perspectives,” in Proc. Int. Workshop on Convergent Tech. (IWTC ’05),
Jun. 2005, pp. 1-6.

[4] H. Bateman, “Tables of Integral Transforms”, New York: McGraw-Hill, 1954.

[5] N. Boubaker, and K. B. Letaief, “A Low complexity MMSE-RAKE Receiver in
a Realistic UWB Channel and in the presence of NBI,” in Proc. IEEE Wireless
Commun. and Network. Conf. (WCNC ’03), vol. 1, New Orleans, LA, Mar. 2003,
pp. 233-237.

[6] S. Boyd, L. El Ghaoui, E. Feron, and V. Baakrishnan, Linear Matrix Inequalities
in System and Control Theory, Philadelphia: SIAM, 1994.

[7] D.R. Brillinger, Time Series Data Analysis and Theory, New York: Holt, Rine-
hart and Winston, 1975.

[8] J. Cai, X. Shen, J. W. Mark, H. Liu, and T. D. Todd, “Semiblind channel estima-
tion for pulse-based ultra-wideband wireless communication systems,” Vehicular
Tech., IEEE Trans. on, vol. 55, Jan. 2006, pp. 95-103.

[9] C. Carbonelli, S. Franz, U. Mengali, and U. Mitra, “Semi-Blind ML Synchro-
nization for UWB Transmitted Reference Systems,” in Proc. of the Asilomar
Conference on Signals, Systems and Computers, Nov. 2004, pp. 1491-1495.

[10] D. Cassioli, M. Z. Win, and A. F. Molish, “The ultra-wide bandwidth indoor
channel: from statistical model to simulations,” IEEE J. Select. Areas Commun.,
vol. 20, Issue: 6, pp. 1247-1257, Aug. 2002.

127



128

[11] D. Cassioli, M. Z. Win, F. Vatalaro, and A. F. Molish, “Performance of Low-
Complexity Rake Reception in a Realistic UWB Channel,” in Proc. IEEE Int.
Conf. on Commun. (ICC ’02), vol. 2, New York City, NY, Apr. 2002, pp. 763-
767.

[12] Y-L. Chao, and R. A. Scholtz, “Ultra-Wideband Transmitted Reference Sys-
tems,” Vehicular Tech., IEEE Trans. on, vol. 54, Sept. 2005, pp. 1556-1569.

[13] J. D. Choi, and W. E. Stark, “Performance of Ultra-Wideband Communications
with Suboptimal Receivers in Multipath Channels,” Comm., IEEE J. on Selected
Areas in, vol. 20, Dec. 2002, pp. 1754-1766.

[14] R. J-M. Cramer, M. Z. Win, and R. A. Scholtz, “Impulse Radio Multipath
Characteristics and Diversity Reception,” in Proc. IEEE Int. Conf. Commun.
(ICC ’98), vol. 3, Atlanta, GA, Jun. 1998, pp. 1650-1654.

[15] F. M. Dannan, ”Matrix and Operator Inequalities,” J. of Inequalities in Pure
and Applied Math., vol. 2, issue 3, 2001.

[16] C. R. C. M. da Silva, and L. B. Milstein, “Coarse Acvquisition Performance
of Spectral-Encoded UWB Communication Systems in the Presence of Narrow-
Band Interference,” submitted to the IEEE Trans. On Communications.

[17] D. M. Dlugos, and R. A. Scholtz, “Acquisition of Spread Spectrum Signals by
an Adaptive Array,” Acoustics, Speech, and Signal Processing, IEEE Trans. on,
vol. 37, Aug. 1989, pp. 1253-1270.

[18] G. Durisi and G. Romano, “On the validity of gaussian approximation to charac-
terize the multiuser capacity of UWB TH PPM”, IEEE Conf. on Ultra Wideband
Systems and Technologies, Digest of Papers, pp. 157-162, 2002.

[19] S. Farahmand, X. Luo, G. B. Giannakis, “Demodulation and Tracking with Dirty
Templates for UWB Impulse Radio: Algorithms and Performance,” Vehicular
Tech., IEEE Trans. on, vol. 54, Sept. 2005, pp. 1595-1608.

[20] FCC, ”Revision of Part 15 the Commission’s rules regarding ultra-wideband
transmission systems,” ET Docket 98-153, 2002.

[21] A. Finger, and S. Zeisberg, “Ultra Wideband Technique,” IEEE feature UWB,
Dresden 2003, pp. 1-2.

[22] J. Foerster, and Q. Li, “UWB Channel Modeling Contribution from Intel,” IEEE
P802.15-02/279-SG3a.

[23] A.R. Forouzan, M. Nasiri-Kenari and J.A. Salehi, “Performance analysis of ul-
trawideband time-hopping code division multiple access systems: uncoded and
coded schemes”, ICC 2001, pp. 3017-3021, Jun. 2001.



129

[24] R. T. Hector, and H. W. Tomlinson, “An Overview of Delay-Hopped,
Transmitted-Reference RF Communications,” Technique Information Series:
General Electric Company Research and Development Center, Jan. 2002.

[25] C.W. Helstrom, Statistical Theory of Signal Detection, New York: Pergamon
Press, 1960.

[26] http://grouper.ieee.org/groups/802/15/pub/2003/Mar03/.

[27] L. Huang, and C. C. Ko, “Performance of Maximum-Likelihood Channel Esti-
mator for UWB Communications,” IEEE Comm. Letters, vol. 8, June 2004, pp.
356-358.

[28] G. M. Hussain, “Principles of Space-Time Array Processing for Ultrawide-Band
Impulse Radar and Radio Communications,” IEEE Trans. Vehicular Tech., vol.
51, Issue:3, pp. 393-403, May 2002.

[29] S. M. Kay, Foundamentals of Statistical Signal Processing: Estimation Theory,
Englewood Cliffs: Prentice-Hall, 1993.

[30] S. Lang, Complex analysis, New York: Springer-Verlag, 1985

[31] M. Loeve, Probability Theory I & II, New York: Springer Verlag, 1978.

[32] V. Lottici, A. D’Andrea, and U. Mengali, “Channel Estimation for Ultra-
Wideband Communications,” Comm., IEEE J. on select. areas in, vol. 20, Dec.
2002, pp. 52-55.

[33] E. Lukacs, “Characteristic Functions”, London: Griffin, 1970.

[34] Y. Ma, T.J. Lim, “Bit Error Probability for MDPSK and NCFSK over Arbitrary
Rician Fading Channels,” Comm., IEEE J. on select. areas in, vol. 18, Nov. 2000,
pp. 2179-2189.

[35] A. M. Mathai, and S. B. Provost, Quadratic Forms in Random Variables: Theory
and Applications. New York: Marcel Dekker, 1992.

[36] J. Oh, S. Yang, and Y. Shin, “A Rapid Acquisition Scheme for UWB Signals in
Indoor Wireless Channels,” in Proc. IEEE Wireless Commun. Network. Conf.
(WCNC ’04), vol. 2, Atlanta, GA, Mar. 2004 ,pp. 1143-1147.

[37] A. Papoulis, “Probability, Random Variables, and Stochastic Processes”, New
York: McGraw-Hill, 1984.

[38] L. D. Paulson, “Will Ultrawideband Technology Connect in the Marketplace?,”
IEEE Computer, vol. 36, pp. 15-17, Dec. 2003.

[39] M. Pausini, and G. J. M. Janssen, “On the Narrowband Interference in Trans-
mitted Reference UWB Receivers,” UWB, 2005 IEEE Int. Conf. on, Sep. 2005,
pp. 571-575.



130

[40] J. G. Proakis, Digital Communications, 4th ed., New York: McGraw-Hill, 2001.

[41] T. Q. S. Quek, M. Z. Win, and D. Dardari, “UWB Transmitted Reference Sig-
naling Schemes - Part II: Narrowband interference Analysis,” UWB, 2005 IEEE
Int. Conf. on, Sep. 2005, pp. 593-598.

[42] L. Quinghua, and L. A. Rusch, “Multiuser receivers for DS-CDMA UWB,” in
Proc. IEEE Conf. Ultra-Wideband Systems Tech. (UWBST ’02), Baltimore, MD,
May 2002, pp. 163-168.

[43] A. Rabbachin, and I. Oppermann, “Comparison of UWB transmitted reference
schemes,” Comm., IEE Proceedings, vol. 153, Feb. 2006, pp. 136-142.

[44] B. D. Rao, M. Wengler, and B. Judson, “Performance analysis and comparison
of MRC and optimal combining in antenna array systems,” IEEE Int. Conf.
Acoustics, Speech, Signal Processing (ICASSP ’01), vol. 5, Salt Lake City, UT,
May 2001 , pp. 2949-2952.

[45] H. F. Rashvand, B. Allen, and M. Ghavami, “Editorial: Ultra wideband systems
technologies and applications,” in Proc. IEEE Int. Conf. Commun. (ICC ’06),
vol. 153, pp. 81-82, Feb. 2006.

[46] R. R. Rick, and L. B. Milstein, “Optimal Decision Strategies for Acquisition
of Spread-Spectrum Signals in Frequency-Selective Fading Channels,” Comm.,
IEEE Trans. on, vol. 46, May 1998, pp. 686-694.

[47] G. S. Rogers, Matrix Derivatives, Series edited by: D. B. Owen, Dept. of Statis-
tics, Southern Methodist University, Dallas, 1980. Acoustics, Speech, and Signal
Processing, IEEE Transactions on, vol. 37, Aug. 1989, pp. 1253-1270.

[48] M. Sabattini, E. Masry, and L. B. Milstein, “A Non-Gaussian Approach to the
Performance Analysis of UWB TH-BPPM Systems,” in Proc. IEEE Conf. Ultra-
Wideband Systems Tech. (UWBST ’03), Reston, VA, Nov. 2003, pp. 52-55.

[49] M. Sabattini, E. Masry, and L. B. Milstein, “Joint Code Acquisition and Channel
Estimation for UWB Transmission,” 2006 IEEE Sarnoff Symposium, Mar. 2006.

[50] A. Saleh, and R. Valenzuela, “A Statistical Model for Indoor Multipath Propa-
gation,” Communications, IEEE J. Select. Areas Commun., vol. 5, Issue: 2, pp.
128-137, Feb. 1987.

[51] J. Salz, and J. H. Winters, “Effect of Fading Correlation on Adaptive arrays
in Digital Mobile Radio,” IEEE Trans. Vehicular Tech., vol. 43, Issue: 4, pp.
1049-1057, Nov. 1994.

[52] M. K. Simon, Probability Distributions Involving Gaussian Random Variables:
A Hendbook for Engineers and Scientists, 1st ed., Norwell: Kluwer Acad. Press,
2002.



131

[53] K. Siwiak, P. Withington, and S. Phelan, “Ultra-Wide Band Radio: The Emer-
gence of an Important New Technology,” in Proc. IEEE Vehicular Tech. Conf.
(VTC), vol. 2, pp. 1169-1172, May 2001.

[54] G. L. Stueber, Principles of Mobile Communication, 2nd ed., Boston: Kluwer
Academic Press, 2000.

[55] S. Tan, B. Kannan, and A. Nallanathan, “Performance of Ultra-Wideband Time-
Hopping Spread Spectrum Impulse Radio Systems with Antenna Array,” in Proc.
IEEE Int. Conf. Commun. Systems (ICCS ’02), vol. 1, Amsterdam, the Nether-
lands, Nov. 2002, pp. 399-403.

[56] G. L. Turin, “Communication through noisy, random-multipath channels,” MIT
Lincoln Lab., Tech. Rep. 116, May 1956.

[57] G. L. Turin, “The characteristic function of Hermitian quadratic forms in com-
plex normal variables,” Biometrika, pp. 199-201, June 1960.

[58] H.L. Van Trees, Detection, Estimation, and Modulation Theory, vol. II, New
York: Wiley & Sons, 1971.

[59] B. D. Van Veen, and K. M. Buckley, “Beamforming: a Versatile Approach to
Spatial Filtering,” IEEE Acoustics, Speech, Signal Processing Magaz., vol. 5 ,
Issue: 2, pp. 4-24, Apr. 1988.

[60] S. Vijayakumaran, and T. F. Wong, “On Equal-Gain Combining for Acquisition
of Time-Hopping Ultra-Wideband Signals,” Comm., IEEE Trans. on, vol. 54,
Mar. 2006, pp. 479-490.

[61] M. Villanti, M. Sabattini, G. M. Maggio, and L. B. Milstein, “Non-coherent code
acquisition for UWB systems in dense multipath fading channels,” Vehicular
Technology Conference, VTC 2005-Spring, 30 May-1 June 2005.

[62] J. Walko, ”Agree to Disagree,” IEE Review, vol. 50, May 2004 pp. 28-29.

[63] C. Wildey, ”UWB: The Start of a Dark Age?” IEE Comm. Engineer, vol. 2,
Apr. 2004, pp. 7-7.

[64] M.Z. Win and R.A. Scholtz, “Impulse radio: how it works”, IEEE Comm. Let-
ters, vol. 2, pp. 36-38, Feb 1998.

[65] M.Z. Win and R.A. Scholtz, “Ultra-wide bandwidth time-hopping spread-
spectrum impulse radio for wireless multiple-access communications”, IEEE
Trans. Communications, vol. 48, pp. 679 -689, Apr 2000.

[66] D. Wu, P. Spasojevic, and I. Seskar, “Multipath Beamforming for UWB: channel
Unknown at the receiver,” Asilomar Conf. Signals, Systems Computers, vol. 1,
Pacific Grove, CA, Nov. 2002 , pp. 599-603.



132

[67] F. Zabini, Beamforming Techniques in Multiple Antennas Ultra Wide Band Sis-
tems in the presence of Interference, Master Thesis, University of Bologna, Mar.
2004.

[68] P. P. Zabreyko et al., Integral Equations - a reference text, translatad and edited
by T. O. Shaposhnikova, R. S. Anderssen, and S. G. Mikhlin, 1st ed., Leyden:
Noordhoff International Publishing, 1975.

[69] H. Zhang, and T. A. Gulliver, “Biorthogonal pulse position modulation for time-
hopping multiple access UWB communications,” Comm., IEEE Trans. on, vol.
4, May 2005, pp. 1154-1162.


